Dinickel Active Sites Supported by Redox-Active Ligands

Acc Chem Res. 2021 Oct 5;54(19):3710-3719. doi: 10.1021/acs.accounts.1c00424. Epub 2021 Sep 26.

Abstract

Redox reactions that take place in enzymes and on the surfaces of heterogeneous catalysts often require active sites that contain multiple metals. By contrast, there are very few homogeneous catalysts with multinuclear active sites, and the field of organometallic chemistry continues to be dominated by the study of single metal systems. Multinuclear catalysts have the potential to display unique properties owing to their ability to cooperatively engage substrates. Furthermore, direct metal-to-metal covalent bonding can give rise to new electronic configurations that dramatically impact substrate binding and reactivity. In order to effectively capitalize on these features, it is necessary to consider strategies to avoid the dissociation of fragile metal-metal bonds in the course of a catalytic cycle. This Account describes one approach to accomplishing this goal using binucleating redox-active ligands.In 2006, Chirik showed that pyridine-diimines (PDI) have sufficiently low-lying π* levels that they can be redox-noninnocent in low-valent iron complexes. Extending this concept, we investigated a series of dinickel complexes supported by naphthyridine-diimine (NDI) ligands. These complexes can promote a broad range of two-electron redox processes in which the NDI ligand manages electron equivalents while the metals remain in a Ni(I)-Ni(I) state.Using (NDI)Ni2 catalysts, we have uncovered cases where having two metals in the active site addresses a problem in catalysis that had not been adequately solved using single-metal systems. For example, mononickel complexes are capable of stoichiometrically dimerizing aryl azides to form azoarenes but do not turn over due to strong product inhibition. By contrast, dinickel complexes are effective catalysts for this reaction and avoid this thermodynamic sink by binding to azoarenes in their higher-energy cis form.Dinickel complexes can also activate strong bonds through the cooperative action of both metals. Norbornadiene has a ring-strain energy that is similar to that of cyclopropane but is not prone to undergoing C-C oxidative addition with monometallic complexes. Using an (NDI)Ni2 complex, norbornadiene undergoes rapid ring opening by the oxidative addition of the vinyl and bridgehead carbons. An inspection of the resulting metallacycle reveals that it is stabilized through a network of secondary Ni-π interactions. This reactivity enabled the development of a catalytic carbonylative rearrangement to form fused bicyclic dienones.These vignettes and others described in this Account highlight some of the implications of metal-metal bonding in promoting a challenging step in a catalytic cycle or adjusting the thermodynamic landscape of key intermediates. Given that our studies have focused nearly exclusively on the (NDI)Ni2 system, we anticipate that many more such cases are left to be discovered as other transition-metal combinations and ligand classes are explored.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Coordination Complexes / chemical synthesis
  • Coordination Complexes / chemistry*
  • Imines / chemistry*
  • Ligands
  • Molecular Structure
  • Nickel / chemistry*
  • Oxidation-Reduction
  • Pyridines / chemistry*

Substances

  • Coordination Complexes
  • Imines
  • Ligands
  • Pyridines
  • Nickel
  • pyridine