The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19

Biology (Basel). 2021 Aug 31;10(9):852. doi: 10.3390/biology10090852.

Abstract

COVID-19 has specific characteristics that distinguish this disease from many other infections. We suggest that the pathogenesis of severe forms of COVID-19 can be associated with acidosis. This review article discusses several mechanisms potentially linking the damaging effects of COVID-19 with acidosis and shows the existence of a vicious cycle between the development of hypoxia and acidosis in COVID-19 patients. At the early stages of the disease, inflammation, difficulty in gas exchange in the lungs and thrombosis collectively contribute to the onset of acidosis. In accordance with the Verigo-Bohr effect, a decrease in blood pH leads to a decrease in oxygen saturation, which contributes to the exacerbation of acidosis and results in a deterioration of the patient's condition. A decrease in pH can also cause conformational changes in the S-protein of the virus and thus lead to a decrease in the affinity and avidity of protective antibodies. Hypoxia and acidosis lead to dysregulation of the immune system and multidirectional pro- and anti-inflammatory reactions, resulting in the development of a "cytokine storm". In this review, we highlight the potential importance of supporting normal blood pH as an approach to COVID-19 therapy.

Keywords: Bohr effect; COVID-19; SARS-CoV-2; acidosis; hypoxia; lactate; pH; saturation.

Publication types

  • Review