Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes
- PMID: 34574296
- PMCID: PMC8467252
- DOI: 10.3390/foods10092186
Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Keywords: d-allulose; directed evolution; enzymatic biotransformation; ketose 3-epimerase; physiological functions; production processes; sweetener.
Conflict of interest statement
The authors declare that there is no conflict of interest.
Figures
Similar articles
-
Review on D-Allulose: In vivo Metabolism, Catalytic Mechanism, Engineering Strain Construction, Bio-Production Technology.Front Bioeng Biotechnol. 2020 Feb 3;8:26. doi: 10.3389/fbioe.2020.00026. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32117915 Free PMC article. Review.
-
Recent Advances Regarding the Physiological Functions and Biosynthesis of D-Allulose.Front Microbiol. 2022 Apr 14;13:881037. doi: 10.3389/fmicb.2022.881037. eCollection 2022. Front Microbiol. 2022. PMID: 35495640 Free PMC article. Review.
-
D-allulose, a versatile rare sugar: recent biotechnological advances and challenges.Crit Rev Food Sci Nutr. 2023;63(22):5661-5679. doi: 10.1080/10408398.2021.2023091. Epub 2021 Dec 29. Crit Rev Food Sci Nutr. 2023. PMID: 34965808
-
Efficient enzymatic synthesis of d-allulose using a novel d-allulose-3-epimerase from Caballeronia insecticola.J Sci Food Agric. 2023 Jan 15;103(1):339-348. doi: 10.1002/jsfa.12147. Epub 2022 Aug 5. J Sci Food Agric. 2023. PMID: 35871484
-
A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis.Appl Environ Microbiol. 2020 Feb 18;86(5):e02605-19. doi: 10.1128/AEM.02605-19. Print 2020 Feb 18. Appl Environ Microbiol. 2020. PMID: 31862716 Free PMC article.
Cited by
-
[Simultaneous determination of six rare sugars in solid foods by high performance liquid chromatography-evaporative light-scattering detection].Se Pu. 2023 Sep;41(9):781-788. doi: 10.3724/SP.J.1123.2023.02014. Se Pu. 2023. PMID: 37712542 Free PMC article. Chinese.
-
The Engineering, Expression, and Immobilization of Epimerases for D-allulose Production.Int J Mol Sci. 2023 Aug 11;24(16):12703. doi: 10.3390/ijms241612703. Int J Mol Sci. 2023. PMID: 37628886 Free PMC article. Review.
-
A Novel D-Psicose 3-Epimerase from Halophilic, Anaerobic Iocasia fonsfrigidae and Its Application in Coconut Water.Int J Mol Sci. 2023 Mar 29;24(7):6394. doi: 10.3390/ijms24076394. Int J Mol Sci. 2023. PMID: 37047367 Free PMC article.
-
Produce D-allulose from non-food biomass by integrating corn stalk hydrolysis with whole-cell catalysis.Front Bioeng Biotechnol. 2023 Feb 24;11:1156953. doi: 10.3389/fbioe.2023.1156953. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 36911188 Free PMC article.
-
Characterization of D-Allulose-3-Epimerase From Ruminiclostridium papyrosolvens and Immobilization Within Metal-Organic Frameworks.Front Bioeng Biotechnol. 2022 Apr 14;10:869536. doi: 10.3389/fbioe.2022.869536. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35497354 Free PMC article.
References
-
- Virtanen H.E.K., Koskinen T.T., Voutilainen S., Mursu J., Tuomainen T.P., Kokko P., Virtanen J.K. Intake of different dietary proteins and risk of type 2 diabetes in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2017;117:882–893. doi: 10.1017/S0007114517000745. - DOI - PubMed
-
- Matsuo T., Tanaka T., Hashiguchi M., Izumori K., Suzuki H. Metabolic effects of D-psicose in rats: Studies on faecal and urinary excretion and caecal fermentation. Asia Pac. J. Clin. Nutr. 2003;12:225–231. - PubMed
-
- Fukada K., Ishii T., Tanaka K., Yamaji M., Yamaoka Y., Kobashi K.-I., Izumori K. Crystal Structure, Solubility, and Mutarotation of the Rare Monosaccharide D-Psicose. Bull. Chem. Soc. Jpn. 2010;83:1193–1197. doi: 10.1246/bcsj.20100148. - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
