Ultrahigh energy storage in superparaelectric relaxor ferroelectrics

Science. 2021 Oct;374(6563):100-104. doi: 10.1126/science.abi7687. Epub 2021 Sep 30.

Abstract

Electrostatic energy storage technology based on dielectrics is fundamental to advanced electronics and high-power electrical systems. Recently, relaxor ferroelectrics characterized by nanodomains have shown great promise as dielectrics with high energy density and high efficiency. We demonstrate substantial enhancements of energy storage properties in relaxor ferroelectric films with a superparaelectric design. The nanodomains are scaled down to polar clusters of several unit cells so that polarization switching hysteresis is nearly eliminated while relatively high polarization is maintained. We achieve an ultrahigh energy density of 152 joules per cubic centimeter with markedly improved efficiency (>90% at an electric field of 3.5 megavolts per centimeter) in superparaelectric samarium-doped bismuth ferrite–barium titanate films. This superparaelectric strategy is generally applicable to optimize dielectric and other related functionalities of relaxor ferroelectrics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't