Iron-catalyzed arene C-H hydroxylation

Science. 2021 Oct;374(6563):77-81. doi: 10.1126/science.abj0731. Epub 2021 Sep 30.

Abstract

The sustainable, undirected, and selective catalytic hydroxylation of arenes remains an ongoing research challenge because of the relative inertness of aryl carbon-hydrogen bonds, the higher reactivity of the phenolic products leading to over-oxidized by-products, and the frequently insufficient regioselectivity. We report that iron coordinated by a bioinspired l-cystine–derived ligand can catalyze undirected arene carbon-hydrogen hydroxylation with hydrogen peroxide as the terminal oxidant. The reaction is distinguished by its broad substrate scope, excellent selectivity, and good yields, and it showcases compatibility with oxidation-sensitive functional groups, such as alcohols, polyphenols, aldehydes, and even a boronic acid. This method is well suited for the synthesis of polyphenols through multiple carbon-hydrogen hydroxylations, as well as the late-stage functionalization of natural products and drug molecules.

Publication types

  • Research Support, Non-U.S. Gov't