Atypical activation of signaling downstream of inactivated Bcr-Abl mediates chemoresistance in chronic myeloid leukemia

J Cell Commun Signal. 2022 Jun;16(2):207-222. doi: 10.1007/s12079-021-00647-x. Epub 2021 Oct 1.

Abstract

Chronic myeloid leukemia (CML) epitomises successful targeted therapy, where inhibition of tyrosine kinase activity of oncoprotein Bcr-Abl1 by imatinib, induces remission in 86% patients in initial chronic phase (CP). However, in acute phase of blast crisis, 80% patients show resistance, 40% among them despite inhibition of Bcr-Abl1 activity. This implies activation of either Bcr-Abl1- independent signalling pathways or restoration of signalling downstream of inactive Bcr-Abl1. In the present study, mass spectrometry and subsequent in silico pathway analysis of differentiators in resistant CML-CP cells identified key differentiators, 14-3-3ε and p38 MAPK, which belong to Bcr-Abl1 pathway. Their levels and activity respectively, indicated active Bcr-Abl1 pathway in CML-BC resistant cells, though Bcr-Abl1 is inhibited by imatinib. Further, contribution of these components to resistance was demonstrated by inhibition of Bcr-Abl1 down-stream signalling by knocking-out of 14-3-3ε and inhibition of p38 MAPK activity. The observations merit clinical validation to explore their translational potential.

Keywords: Bcr-Abl1; Chronic myeloid leukemia; Imatinib resistance; Mass spectrometry; Proteomics; p38-MAPK.