Multicolor fluorescence encoding of different microRNAs in lung cancer tissues at the single-molecule level
- PMID: 34603671
- PMCID: PMC8482311
- DOI: 10.1039/d1sc02982g
Multicolor fluorescence encoding of different microRNAs in lung cancer tissues at the single-molecule level
Abstract
The simultaneous detection of multiple microRNAs (miRNAs) will facilitate early clinical diagnosis. Herein, we demonstrate the integration of multicolor fluorophore-encoded cascade signal amplification with single-molecule detection for simultaneous measurement of different miRNAs in lung cancer tissues. This assay involves two linear templates and two circular templates without the requirement of any fluorescent-labeled probes. The binding of target miRNAs to their corresponding linear templates initiates the cyclic strand displacement amplification, generating many triggers which can specifically hybridize with the corresponding biotin-labeled AP probes to initiate the apurinic/apyrimidic endonuclease 1-assisted cyclic cleavage reaction for the production of more biotin-labeled primers for each miRNA. The resultant two primers can react with their corresponding circular templates to initiate rolling circle amplification which enables the incorporation of Cy5-dCTP/Cy3-dGTP nucleotides, resulting in the simultaneous production of abundant biotin-/multiple Cy5/Cy3-labeled DNA products. After magnetic separation and exonuclease cleavage, the amplified products release abundant Cy5 and Cy3 fluorescent molecules which can be simply monitored by single-molecule detection, with Cy3 indicating miR-21 and Cy5 indicating miR-155. This assay involves three consecutive amplification reactions, enabling the conversion of extremely low abundant target miRNAs into large numbers of Cy5/Cy3 fluorophore-encoded DNA products which can release abundant fluorescent molecules for the generation of amplified signals. This assay exhibits high sensitivity, good selectivity, and the capability of multiplexed assay. This method can simultaneously quantify miR-155 and miR-21 in living cells and in lung cancer tissues, and it can distinguish the expression of miRNAs between non-small cell lung cancer patients and healthy persons. The accuracy and reliability of the proposed method are further validated by quantitative reverse transcription polymerase chain reaction.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level.Chem Sci. 2020 May 18;11(22):5724-5734. doi: 10.1039/d0sc01652g. eCollection 2020 Jun 14. Chem Sci. 2020. PMID: 32864084 Free PMC article.
-
Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs.Chem Sci. 2018 Apr 12;9(18):4258-4267. doi: 10.1039/c8sc00832a. eCollection 2018 May 14. Chem Sci. 2018. PMID: 29780556 Free PMC article.
-
Combination of bidirectional strand displacement amplification with single-molecule detection for multiplexed DNA glycosylases assay.Talanta. 2021 Dec 1;235:122805. doi: 10.1016/j.talanta.2021.122805. Epub 2021 Aug 14. Talanta. 2021. PMID: 34517663
-
Construction of a Quencher-Free Cascade Amplification System for Highly Specific and Sensitive Detection of Serum Circulating miRNAs.Anal Chem. 2020 Jun 16;92(12):8546-8552. doi: 10.1021/acs.analchem.0c01385. Epub 2020 May 24. Anal Chem. 2020. PMID: 32394711
-
Sensitive detection of microRNAs with hairpin probe-based circular exponential amplification assay.Anal Chem. 2012 Aug 21;84(16):7037-42. doi: 10.1021/ac3012544. Epub 2012 Aug 6. Anal Chem. 2012. PMID: 22834952
Cited by
-
Evaluation of probe-based ultra-sensitive detection of miRNA using a single-molecule fluorescence imaging method: miR-126 used as the model.Front Bioeng Biotechnol. 2023 Jan 24;11:1081488. doi: 10.3389/fbioe.2023.1081488. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 36761298 Free PMC article.
-
Construction of Very Low-Cost Loop Polymerase Chain Reaction System Based on Proportional-Integral-Derivative Temperature Control Optimization Algorithm and Its Application in Gene Detection.ACS Omega. 2022 Dec 12;7(50):46003-46011. doi: 10.1021/acsomega.2c02975. eCollection 2022 Dec 20. ACS Omega. 2022. PMID: 36570205 Free PMC article.
-
CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging.Chem Sci. 2022 Sep 10;13(38):11433-11441. doi: 10.1039/d2sc03329a. eCollection 2022 Oct 5. Chem Sci. 2022. PMID: 36320584 Free PMC article.
-
Boosting the Photocatalytic Ability of TiO2 Nanosheet Arrays for MicroRNA-155 Photoelectrochemical Biosensing by Titanium Carbide MXene Quantum Dots.Nanomaterials (Basel). 2022 Oct 11;12(20):3557. doi: 10.3390/nano12203557. Nanomaterials (Basel). 2022. PMID: 36296747 Free PMC article.
-
Spatiotemporal Regulation of Metal Ions in the Polymerase Chain Reaction.ACS Omega. 2022 Sep 7;7(37):33530-33536. doi: 10.1021/acsomega.2c04507. eCollection 2022 Sep 20. ACS Omega. 2022. PMID: 36157739 Free PMC article.
References
LinkOut - more resources
Full Text Sources
