Using photocaging for fast time-resolved structural biology studies

Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1218-1232. doi: 10.1107/S2059798321008809. Epub 2021 Sep 22.

Abstract

Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.

Keywords: photocages; reaction initiation; serial crystallography; time-resolved structural biology.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Light*
  • Photochemical Processes*
  • Protein Conformation
  • Proteins / chemistry*
  • X-Ray Diffraction / methods*

Substances

  • Proteins