Photochemistry of Heteroleptic 1,4,5,8-Tetraazaphenanthrene- and Bi-1,2,3-triazolyl-Containing Ruthenium(II) Complexes

Inorg Chem. 2021 Oct 18;60(20):15768-15781. doi: 10.1021/acs.inorgchem.1c02441. Epub 2021 Oct 6.

Abstract

Diimine metal complexes have significant relevance in the development of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) applications. In particular, complexes of the TAP ligand (1,4,5,8-tetraazaphenanthrene) are known to lead to photoinduced oxidation of DNA, while TAP- and triazole-based complexes are also known to undergo photochemical ligand release processes relevant to PACT. The photophysical and photochemical properties of heteroleptic complexes [Ru(TAP)n(btz)3-n]2+ (btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 1 (1), 2 (2)) have been explored. Upon irradiation in acetonitrile, 1 displays analogous photochemistry to that previously observed for [Ru(bpy)(btz)2]2+ (bpy = 2,2'-bipyridyl) and generates trans-[Ru(TAP)(btz)(NCMe)2]2+ (5), which has been crystallographically characterized, with the observation of the ligand-loss intermediate trans-[Ru(TAP)(κ2-btz)(κ1-btz)(NCMe)]2+ (4). Complex 2 displays more complicated photochemical behavior with not only preferential photorelease of btz to form cis-[Ru(TAP)2(NCMe)2]2+ (6) but also competitive photorelease of TAP to form 5. Free TAP is then taken up by 6 to form [Ru(TAP)3]2+ (3) with the proportion of 5 and 3 observed to progressively increase during prolonged photolysis. Data suggest a complex set of reversible photochemical ligand scrambling processes in which 2 and 3 are interconverted. Computational DFT calculations have enabled optimization of geometries of the pro-trans 3MCcis states with repelled btz or TAP ligands crucial for the formation of 5 from 1 and 2, respectively, lending weight to recent evidence that such 3MCcis states play an important mechanistic role in the rich photoreactivity of Ru(II) diimine complexes.