The assembly, regulation and function of the mitochondrial respiratory chain
- PMID: 34621061
- DOI: 10.1038/s41580-021-00415-0
The assembly, regulation and function of the mitochondrial respiratory chain
Abstract
The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases.
© 2021. Springer Nature Limited.
Similar articles
-
Architecture of active mammalian respiratory chain supercomplexes.J Biol Chem. 2006 Jun 2;281(22):15370-5. doi: 10.1074/jbc.M513525200. Epub 2006 Mar 20. J Biol Chem. 2006. PMID: 16551638
-
Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.Nat Struct Mol Biol. 2017 Oct 5;24(10):800-808. doi: 10.1038/nsmb.3460. Nat Struct Mol Biol. 2017. PMID: 28981073 Review.
-
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.Biochim Biophys Acta. 2014 Apr;1837(4):418-26. doi: 10.1016/j.bbabio.2013.10.004. Epub 2013 Oct 30. Biochim Biophys Acta. 2014. PMID: 24183696 Review.
-
Sealing the mitochondrial respirasome.Mol Cell Biol. 2012 Jul;32(14):2647-52. doi: 10.1128/MCB.00573-12. Epub 2012 May 14. Mol Cell Biol. 2012. PMID: 22586278 Free PMC article. Review.
-
Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role.J Mol Med (Berl). 2021 Jan;99(1):57-73. doi: 10.1007/s00109-020-02004-8. Epub 2020 Nov 17. J Mol Med (Berl). 2021. PMID: 33201259 Free PMC article. Review.
Cited by
-
Knockout Mouse Studies Show That Mitochondrial CLPP Peptidase and CLPX Unfoldase Act in Matrix Condensates near IMM, as Fast Stress Response in Protein Assemblies for Transcript Processing, Translation, and Heme Production.Genes (Basel). 2024 May 27;15(6):694. doi: 10.3390/genes15060694. Genes (Basel). 2024. PMID: 38927630 Free PMC article. Review.
-
Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation.Nat Commun. 2024 Sep 8;15(1):7855. doi: 10.1038/s41467-024-52171-2. Nat Commun. 2024. PMID: 39245680 Free PMC article.
-
Longitudinal changes in mitochondrial-associated measures and insulin resistance in youth with perinatally-acquired HIV in the U.S.Mitochondrion. 2024 Sep;78:101936. doi: 10.1016/j.mito.2024.101936. Epub 2024 Jul 14. Mitochondrion. 2024. PMID: 39009104 Free PMC article.
-
N-acetylcysteine and cysteamine bitartrate prevent azide-induced neuromuscular decompensation by restoring glutathione balance in two novel surf1-/- zebrafish deletion models of Leigh syndrome.Hum Mol Genet. 2023 Jun 5;32(12):1988-2004. doi: 10.1093/hmg/ddad031. Hum Mol Genet. 2023. PMID: 36795052 Free PMC article.
-
From the 'black box' to 'domino effect' mechanism: what have we learned from the structures of respiratory complex I.Biochem J. 2023 Mar 15;480(5):319-333. doi: 10.1042/BCJ20210285. Biochem J. 2023. PMID: 36920092 Free PMC article. Review.
References
-
- Nicholls, D. Bioenergetics - 4th Edition (Academic Press, 2013).
-
- Green, D. E. & Tzagoloff, A. The mitochondrial electron transfer chain. Arch. Biochem. Biophys. 116, 293–304 (1966). - PubMed
-
- Krebs, H. A. & Johnson, W. A. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148–156 (1937).
-
- Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
