Physiological, metabolic, and stomatal adjustments in response to salt stress in Jatropha curcas

Plant Physiol Biochem. 2021 Nov:168:116-127. doi: 10.1016/j.plaphy.2021.09.039. Epub 2021 Oct 2.


Salinity is a major issue affecting photosynthesis and crop production worldwide. High salinity induces both osmotic and ionic stress in plant tissues as a result of complex interactions among morphological, physiological, and biochemical processes. Salinity, in turn, can provoke inactivation of some enzymes in the Calvin-Benson cycle and therefore affect the fine adjustment of electron transport in photosystem I and carbon related reactions. Here, we used three contrasting Jatropha curcas genotypes namely CNPAE183 (considered tolerant to salinity), CNPAE218 (sensible), and JCAL171 (intermediate) to understand salinity responses. By performing a long-term (12 months) experiment in land conditions, we investigated distinct mechanisms used by J. curcas to cope with threatening salinity effects by analyzing gas exchange, mineral nutrition and metabolic responses. First, our results highlighted the plasticity of stomatal development and density in J. curcas under salt stress. It also demonstrated that the CNPAE183 presented higher salt-tolerance whereas CNPAE218 displayed a more sensitive salt-tolerance response. Our results also revealed that both tolerance and sensitivity to salinity were connected with an extensive metabolite reprogramming in the Calvin-Benson cycle and Tricarboxylic Acid cycle intermediates with significant changes in amino acids and organic acids. Collectively, these results indicate that the CNPAE183 and CNPAE218 genotypes demonstrated certain characteristics of salt-tolerant-like and salt-sensitive-like genotypes, respectively. Overall, our results highlight the significance of metabolites associated with salt responses and further provide a useful selection criterion in during screening for salt tolerance in J. curcas in breeding programmes.

Keywords: Abiotic stress; Gas exchange; Metabolite reprogramming; NaCl; Physic nut; Stomatal functioning.

MeSH terms

  • Jatropha* / genetics
  • Photosynthesis
  • Salinity
  • Salt Tolerance
  • Stress, Physiological