Stereodivergent Synthesis of Enantioenriched γ-Butyrolactones Bearing Two Vicinal Stereocenters Enabled by Synergistic Copper and Iridium Catalysis

Angew Chem Int Ed Engl. 2021 Nov 15;60(47):24930-24940. doi: 10.1002/anie.202107418. Epub 2021 Oct 20.

Abstract

By virtue of a fundamentally new reaction model of azomethine ylide serving as a two-atom synthon, we present the first example of stereodivergent preparation of γ-butyrolactones via synergistic Cu/Ir-catalyzed asymmetric cascade allylation/lactonization, and all four stereoisomers of γ-butyrolactones bearing two vicinal stereocenters are accessible with excellent diastereoselective and enantioselective control. The chiral IrIII -π-allyl intermediate was separated and characterized to understand the origin of the regio- and stereoselectivity of the initial C-C bond formation process. Control experiments shed some light on the catalyst/substrate and catalyst/catalyst interactions in this dual catalytic system to rationalize the related kinetic/dynamic kinetic resolution process with different catalyst combinations. The enantioenriched γ-butyrolactone products were converted into an array of structurally complex chiral molecules and organocatalysts that were otherwise inaccessible.

Keywords: asymmetric catalysis; cascade reactions; stereodivergent synthesis; synergistic catalysis; γ-butyrolactone.