Synthesis, characterization, and theoretical analysis of a plutonyl phosphine oxide complex

Dalton Trans. 2021 Oct 26;50(41):14537-14541. doi: 10.1039/d1dt03041h.

Abstract

The interplay of bond strength and covalency are examined in AnO2Cl2(OPcy3)2 (An = Pu, U) complexes. The synthesis of trans-PuO2Cl2(OPcy3)2, 1-Pu, has been carried out and confirmed by single crystal X-ray diffraction along with UV-vis-NIR, and 31P NMR spectroscopies. Theoretical analysis finds that despite a higher calculated covalency for the Pu-Cl interaction, the Pu-OPcy3 interaction is stronger due to the accumulation of electron density in the interatomic region. The coordination of equatorial ligands slightly decreases the strength of the PuOyl interactions relative to the free gas phase (PuO2)2+ ion.