A precise predictive biomarker for TNBC response to immunochemotherapy is urgently needed. We previously established a 27-gene IO signature for TNBC derived from a previously established 101-gene model for classifying TNBC. Here we report a pilot study to assess the performance of a 27-gene IO signature in predicting the pCR of TNBC to preoperative immunochemotherapy. We obtained RNA sequencing data from the primary tumors of 55 patients with TNBC, who received neoadjuvant immunochemotherapy with the PD-L1 blocker durvalumab. We determined the power and accuracy in predicting pCR for the immunomodulatory (IM) subtype identified by the 101-gene model, the 27-gene IO signature, and PD-L1 expression by immunohistochemistry (IHC). The pCR rate was 45% (25/55). The odds ratios for pCR were as follows: IM subtype by 101-gene model, 3.14 (p = 0.054); 27-gene IO signature, 4.13 (p = 0.012); PD-L1 expression by IHC, 2.63 (p = 0.106); 27-gene IO signature in combination with PD-L1 expression by IHC, 6.53 (p = 0.003). The 27-gene IO signature has the potential to predict the pCR of primary TNBC to neoadjuvant immunochemotherapy. Further analysis in a large cohort is needed.
Keywords: biomarkers; immunotherapy; neoadjuvant therapy; triple-negative breast neoplasms; tumor microenvironment.