A Simple and Efficient Two-Dimensional High-Speed Counter-Current Chromatography Linear Gradient and Isocratic Elution Modes for the Preparative Separation of Coumarins from Roots of Toddalia asiatica (Linn.) Lam

Molecules. 2021 Oct 2;26(19):5986. doi: 10.3390/molecules26195986.


Toddalia asiatica (L.) Lam. (Rutaceae) has shown a broad spectrum of biological properties, such as anti-inflammatory, antioxidant, antimicrobial, anti-HIV, and anticancer properties. The present study is concerned with the separation of the main components with broad partition coefficients (KD values) from T. asiatica, using linear gradient high-speed counter-current chromatography (LGCCC) combined with an off-line two-dimensional (2D) mode. Similar to the binary gradient HPLC, the LGCCC mode is operated by the adjustment of the proportion between the mobile phase of 5:5:1:9 (v/v) (pump A) and 5:5:4.5:5.5 (v/v) (pump B) in an n-hexane/ethyl acetate/methanol/water solvent system. The off-line 2D-CCC mode was used in this study for the secondary separation of two similar KD value compounds with n-hexane/ethyl acetate/methanol/water (5:5:4:6, v/v). Notably, six coumarins, namely, tomentin (1), toddalolactone (2), 5,7,8-trimethoxycoumarin (3), mexoticin (4), isopimpinellin (5), and toddanone (6), were efficiently separated. The structures of the pure compounds were elucidated by spectral techniques and compared with the literature.

Keywords: Toddalia asiatica (L.) Lam.; coumarins; high-speed counter-current chromatography; linear gradient.