How learning unfolds in the brain: toward an optimization view

Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.


How do changes in the brain lead to learning? To answer this question, consider an artificial neural network (ANN), where learning proceeds by optimizing a given objective or cost function. This "optimization framework" may provide new insights into how the brain learns, as many idiosyncratic features of neural activity can be recapitulated by an ANN trained to perform the same task. Nevertheless, there are key features of how neural population activity changes throughout learning that cannot be readily explained in terms of optimization and are not typically features of ANNs. Here we detail three of these features: (1) the inflexibility of neural variability throughout learning, (2) the use of multiple learning processes even during simple tasks, and (3) the presence of large task-nonspecific activity changes. We propose that understanding the role of these features in the brain will be key to describing biological learning using an optimization framework.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Algorithms
  • Brain*
  • Learning*
  • Neural Networks, Computer
  • Problem Solving