HNSC exosome-derived MIAT improves cognitive disorders in rats with vascular dementia via the miR-34b-5p/CALB1 axis

Am J Transl Res. 2021 Sep 15;13(9):10075-10093. eCollection 2021.

Abstract

Objective: To explore the molecular mechanism by which hippocampal neural stem cell (HNSC) exosome (exo)-derived MIAT improves cognitive disorders in rats with vascular dementia (VD).

Methods: Rat hippocampal tissues were collected, and HNSCs and hippocampal neuronal cells (HNCs) were isolated, purified, and identified. Then the exosomes (exo) of the HNSCs were extracted and identified. A VD rat model was constructed. HE staining was used to evaluate the hippocampal pathology in each group. The expressions of the RNAs in the HNSCs were intervened, and the cells were then grouped. ELISA was used to measure the of TNF-α, IL-1, and Aβ1-42 expression levels. The kits were used to determine the oxidative stress factor levels. The targeting relationships among MIAT, miR-34b-5p, and CALB1 were measured using dual-luciferase assays. The MIAT expressions in exo were measured using qRT-PCR. The proliferation and apoptosis of the HNCs were determined using CCK-8 and Annexin V-FITC/PI staining, respectively. The CALB1, TH, and Bcl-2 protein expressions were determined using Western blot. The Morris water maze test was used for the spatial learning and memory testing.

Results: The hippocampal tissues in the model group were clearly damaged, but the pathological characteristics were significantly improved in the exo group. The exo group also showed an increased SOD level, decreased MDA and ROS levels, and down-regulated TNF-α, IL-1, and Aβ1-42 expressions (all P<0.05). MiR-34b-5p had a targeting relationship with both MIAT and CALB1, and MIAT was found to be expressed in exo. The oe-MIAT-exo group and the miR-34b-5p inhibitor group showed significantly up-regulated CALB1, TH, and Bcl-2 protein expressions in the HNCs, increased cell viability, as well as reduced apoptosis, but the si-MIAT-exo group showed the opposite results (all P<0.05). The MiR-34b-5p inhibitor partially reversed the effect on the si-MIAT-exo group. The miR-34b-5p mimic group showed significantly down-regulated CALB1, TH, and Bcl-2 protein expressions in the HNCs, inhibited cell viability, as well as increased apoptosis, but the oe-CALB1 group showed the opposite results (all P<0.05). Oe-CALB1 partially reversed the effect on the miR-34b-5p mimic group. The memory and learning abilities of the rats in the oe-MIAT-exo group and the model + exo group were significantly improved but not as much as they were in the normal rats.

Conclusion: MIAT-containing exo from HNSCs can improve cognitive disorders in VD rats via the miR-34b-5p/CALB1 axis.

Keywords: CALB1; MIAT; exosome; hippocampal neural stem cells; miR-34b-5p; vascular dementia.