Adenylyl Cyclase and Protein Kinase A Play Redundant and Distinct Roles in Growth, Differentiation, Antifungal Drug Resistance, and Pathogenicity of Candida auris

mBio. 2021 Oct 26;12(5):e0272921. doi: 10.1128/mBio.02729-21. Epub 2021 Oct 19.

Abstract

Candida auris is a globally emerging multidrug-resistant fungal pathogen. Its pathogenicity-related signaling networks are largely unknown. Here, we characterized the pathobiological functions of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris. We focused on adenylyl cyclase (CYR1), the PKA regulatory subunit (BCY1), and the PKA catalytic subunits (TPK1 and TPK2). We concluded that PKA acts both dependently and independently of Cyr1 in C. auris. Tpk1 and Tpk2 have major and minor roles, respectively, in PKA activity and functions. Both Cyr1 and PKA promote growth, thermotolerance, filamentous growth, and resistance to stress and antifungal drugs by regulating expression of multiple effector genes. In addition, Cyr1 and PKA subunits were involved in disinfectant resistance of C. auris. However, deletion of both TPK1 and TPK2 generally resulted in more severe defects than CYR1 deletion, indicating that Cyr1 and PKA play redundant and distinct roles. Notably, Tpk1 and Tpk2 have redundant but Cyr1-independent roles in haploid-to-diploid cell transition, which increases virulence of C. auris. However, Tpk1 and Tpk2 often play opposing roles in formation of biofilms and the cell wall components chitin and chitosan. Surprisingly, deletion of CYR1 or TPK1/TPK2, which resulted in severe in vitro growth defects at 37°C, did not attenuate virulence, and BCY1 deletion reduced virulence of C. auris in a systemic murine infection model. In conclusion, this study provides comprehensive insights into the role of the cAMP/PKA pathway in drug resistance and pathogenicity of C. auris and suggests a potential therapeutic option for treatment of C. auris-mediated candidemia. IMPORTANCE Despite the recently growing concern of pan-resistant Candida auris infection, the pathogenicity of this ascomycetous fungal pathogen and the signaling circuitries governing its resistance to antifungal drugs are largely unknown. Therefore, we analyzed the pathobiological functions of cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway in C. auris, which plays conserved roles in the growth and virulence of fungal pathogens. We show that adenylyl cyclase Cyr1 and PKA have pleiotropic roles in growth, morphogenesis, stress responses, antifungal drug and disinfectant resistance, and ploidy shifts of C. auris. Notably, however, we observed that the tpk1Δ tpk2Δ mutant generally exhibited more disrupted phenotypes than the cyr1Δ mutant, and we suggest Tpk1 and Tpk2 have both cAMP-dependent and -independent roles in this pathogen. Most surprisingly, we observed that hyperactivation, not inhibition, of the cAMP/PKA pathway reduced virulence of C. auris. Based on our results, we suggest and discuss potential therapeutic strategies for candidiasis caused by C. auris.

Keywords: C. auris; biofilm; cAMP; cyclic AMP; human fungal pathogen; multidrug resistance; ploidy change; pseudohyphae; virulence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenylyl Cyclases / classification
  • Adenylyl Cyclases / genetics
  • Adenylyl Cyclases / metabolism*
  • Animals
  • Antifungal Agents / pharmacology
  • Biofilms / drug effects
  • Biofilms / growth & development
  • Candida auris / drug effects*
  • Candida auris / genetics
  • Candida auris / growth & development
  • Candida auris / pathogenicity*
  • Candidiasis / microbiology
  • Cyclic AMP / metabolism
  • Cyclic AMP-Dependent Protein Kinases / genetics
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Drug Resistance, Fungal*
  • Female
  • Gene Expression Regulation, Fungal
  • Mice
  • Phenotype
  • Signal Transduction*
  • Virulence

Substances

  • Antifungal Agents
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Adenylyl Cyclases