Optimization of Fermentation Conditions for Carrageenase Production by Cellulophaga Species: A Comparative Study

Biology (Basel). 2021 Sep 27;10(10):971. doi: 10.3390/biology10100971.

Abstract

Carrageenases appear in various species of marine bacteria and are widely used for the degradation of carrageenans, the commercially significant sulphated polysaccharides. The carrageenase production ability of six different Cellulophaga species was identified, with ι-carrageenase being the most abundant carrageenolytic enzyme. C. algicola was the most potent strain, followed by C. fucicola and C. geojensis, whereas C. pacifica was the least effective carrageenase producer among the studied strains. The enzyme production was maximized using the one-factor-at-a-time optimization method. The optimal incubation temperature was identified as 25 °C and the incubation time was set as 48 h for all tested species. The optimal medium composition for Cellulophaga strains was determined as 30 g/L sea salt, 1.4 g/L furcellaran, and 3 g/L yeast extract. An ultrafiltered enzyme extracted from C. algicola had the highest activity at around 40 °C. The optimal pH for enzymatic degradation was determined as 7.8, and the enzyme was fairly stable at temperatures up to 40 °C.

Keywords: Cellulophaga; carrageenan; enzyme; fermentation; optimization; ι-carrageenase.