Bamboo-Based Mesoporous Activated Carbon for High-Power-Density Electric Double-Layer Capacitors

Nanomaterials (Basel). 2021 Oct 17;11(10):2750. doi: 10.3390/nano11102750.

Abstract

Demand for hybrid energy storage systems is growing, but electric double-layer capacitors (EDLCs) have insufficient output characteristics because of the microporous structure of the activated carbon electrode material. Commercially, activated carbon is prepared from coconut shells, which yield an activated carbon material (YP-50F) rich in micropores, whereas mesopores are desired in EDLCs. In this study, we prepared mesoporous activated carbon (PB-AC) using a readily available, environmentally friendly resource: bamboo. Crucially, modification using phosphoric acid and steam activation was carried out, which enabled the tuning of the crystal structure and the pore characteristics of the product. The structural characteristics and textural properties of the PB-AC were determined, and the specific surface area and mesopore volume ratio of the PB-AC product were 960-2700 m2/g and 7.5-44.5%, respectively. The high specific surface area and mesopore-rich nature originate from the phosphoric acid treatment. Finally, PB-AC was used as the electrode material in EDLCs, and the specific capacitance was found to be 86.7 F/g for the phosphoric-acid-treated sample steam activated at 900 °C for 60 min; this capacitance is 35% better than that of the commercial YP-50F (64.2 F/g), indicating that bamboo is a suitable material for the production of activated carbon.

Keywords: activated carbon; bamboo; electric double-layer capacitor; phosphoric acid; specific capacitance.