An aromatic substituent has been introduced into a known hydroxyethylamine (HEA)-type BACE1 inhibitor containing the superior substrate sequence to enhance inhibitory activity. The HEA-type isosteres bearing different hydroxyl group and methyl group configurations were prepared through a branched synthesis approach using intra- and inter-molecular epoxide opening reactions. The effect of their configuration was evaluated, showing that an R-configuration improved the inhibitory activity, while introduction of a methyl group on the isostere decreased the activity. Based on the non-substituted isostere with an R-configuration, 21 derivatives containing various substituents at the P1' site were synthesized. Our evaluation of the derivatives showed that the structure of the P1' site had a clear effect on activity, and highly potent inhibitor 40g, which showed sub-micromolar activity against recombinant BACE1 (rBACE1), was identified. The docking simulation of 40g with rBACE1 suggested that a carboxymethyl group at the para-position of the P1' benzene ring interacted with Lys285 in the S1' pocket.
Keywords: Alzheimer’s disease; BACE1; Hydroxyethylamine; Inhibitor; Peptide mimetics.
Copyright © 2021 Elsevier Ltd. All rights reserved.