Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection
- PMID: 34707893
- PMCID: PMC8526186
- DOI: 10.32607/actanaturae.11375
Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection
Abstract
Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.
Keywords: bradykinin-potentiating peptides; cardioprotector; cardiotoxin; cardiovascular system; natriuretic peptide; snake venom.
Copyright ® 2021 National Research University Higher School of Economics.
Figures
Similar articles
-
Hypotensive Snake Venom Components-A Mini-Review.Molecules. 2019 Jul 31;24(15):2778. doi: 10.3390/molecules24152778. Molecules. 2019. PMID: 31370142 Free PMC article. Review.
-
Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases.Molecules. 2021 Apr 12;26(8):2223. doi: 10.3390/molecules26082223. Molecules. 2021. PMID: 33921462 Free PMC article. Review.
-
Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents.Curr Med Chem. 2017;24(30):3254-3282. doi: 10.2174/0929867323666161028155611. Curr Med Chem. 2017. PMID: 27804880 Review.
-
Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases.Biochem Pharmacol. 2020 Nov;181:114105. doi: 10.1016/j.bcp.2020.114105. Epub 2020 Jun 21. Biochem Pharmacol. 2020. PMID: 32579959 Review.
-
Hypotensive agents from snake venoms.Curr Drug Targets Cardiovasc Haematol Disord. 2004 Dec;4(4):437-59. doi: 10.2174/1568006043335808. Curr Drug Targets Cardiovasc Haematol Disord. 2004. PMID: 15578962 Review.
Cited by
-
Bothrops lanceolatus snake venom impairs mitochondrial respiration and induces DNA release in human heart preparation.PLoS Negl Trop Dis. 2022 Jun 21;16(6):e0010523. doi: 10.1371/journal.pntd.0010523. eCollection 2022 Jun. PLoS Negl Trop Dis. 2022. PMID: 35727836 Free PMC article.
-
Effects of Cardiotoxins from Naja oxiana Cobra Venom on Rat Heart Muscle and Aorta: A Comparative Study of Toxin-Induced Contraction Mechanisms.Toxins (Basel). 2022 Jan 24;14(2):88. doi: 10.3390/toxins14020088. Toxins (Basel). 2022. PMID: 35202116 Free PMC article.
-
Cobra Venom Cytotoxins as a Tool for Probing Mechanisms of Mitochondrial Energetics and Understanding Mitochondrial Membrane Structure.Toxins (Basel). 2024 Jun 25;16(7):287. doi: 10.3390/toxins16070287. Toxins (Basel). 2024. PMID: 39057927 Free PMC article. Review.
-
Short-Chained Alcohols Make Membrane Surfaces Conducive for Melittin Action: Implication for the Physiological Role of Alcohols in Cells.Cells. 2022 Jun 15;11(12):1928. doi: 10.3390/cells11121928. Cells. 2022. PMID: 35741057 Free PMC article.
-
Effects of the Heterodimeric Neurotoxic Phospholipase A2 from the Venom of Vipera nikolskii on the Contractility of Rat Papillary Muscles and Thoracic Aortas.Toxins (Basel). 2024 Feb 10;16(2):100. doi: 10.3390/toxins16020100. Toxins (Basel). 2024. PMID: 38393179 Free PMC article.
References
-
- Morais K.L.P., Ianzer D., Miranda J.R.R., Melo R.L., Guerreiro J.R., Santos R.A.S., Ulrich H., Lameu C.. Peptides. 2013;48:124–133. - PubMed
-
- Da Silva S.L., Dias-Junior C.A., Baldasso P.A., Damico D.C.S., Carvalho B.M.A., Garanto A., Acosta G., Oliveira E., Albericio F., Soares A.M.. Peptides. 2012;36(2):206–212. - PubMed
LinkOut - more resources
Full Text Sources