Scope: Allulose is shown to increase the muscle weight in diet-induced obese mice. However, there are no studies on the effects of allulose in age-associated sarcopenia. This study aims to elucidate the mechanisms of action for allulose in age associated by analyzing the transcriptional patterns in aged mice.
Methods and results: The 48-week-old mice are fed with AIN-93diet containing allulose for 12 weeks. Allulose supplementation increases the muscle mass and grip strength in aged mice. Allulose increases the insulin-like growth factor 1 (IGF-1) and its downstream factor expressions which 40 are related protein synthesis, while inhibits the myostatin expression related protein degradation. In mRNA-seq analysis, allulose supplementation significantly decreases in Adiponectin, Adipsin, cell death inducing DFFA like effector (CIDEC), Haptoglobin, Neuroglobin, and stearoyl-CoA desaturase-1 (SCD1) and increases in cytokine-inducible SH2-containing protein (CISH) and ceramide synthase 1 (CerS1) that are regulate protein turn over in gastrocnemius. Also, allulose alleviates autophagy in muscle with regulated mammalian target of rapamycin (mTOR) signaling pathway and increases the anti-oxidant enzyme activity.
Conclusion: These findings suggest that allulose improves the age-associated sarcopenia with enhancing antioxidant properties by altering mRNA and protein expression.
Keywords: age-associated sarcopenia; aged mice; allulose; skeletal muscle function; skeletal muscle mass.
© 2021 Wiley-VCH GmbH.