Effect of dynamic loading on fracture resistance of gradient zirconia fixed partial denture frameworks

J Prosthet Dent. 2023 Aug;130(2):242-249. doi: 10.1016/j.prosdent.2021.09.027. Epub 2021 Nov 2.

Abstract

Statement of problem: The new strength-gradient zirconia composed of 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 5-mol% yttria-stabilized tetragonal zirconia polycrystal (5Y-TZP) has been claimed to have superior mechanical properties. However, data on the fracture resistance of 3-unit gradient 5Y-TZP and 3Y-TZP fixed partial denture frameworks are lacking.

Purpose: The purpose of this in vitro study was to evaluate the effect of dynamic loading on the fracture resistance of gradient zirconia fixed partial denture frameworks.

Material and methods: Two standardized stainless-steel master dies were designed to simulate a mandibular left second premolar and second molar prepared to receive zirconia frameworks. The frameworks were designed with a 0.6-mm uniform wall thickness. The mesiodistal width of the connectors was 3 ±0.02 mm, and the occlusogingival height was 3 ±0.02 mm. Forty zirconia frameworks were fabricated and divided into 2 groups according to the tested materials (n=20): 3Y-TZP and gradient 5Y-TZP and 3Y-TZP. The frameworks were cemented onto their corresponding dies with a conventional glass ionomer cement. Half of the cemented frameworks in each group underwent 600 000 cycles of dynamic loading in a mastication simulator (n=10). The other half was fractured without dynamic loading (n=10). Fracture resistance measurements (N) for each framework were recorded by using a universal testing machine at a crosshead speed of 1 mm/min. A fractured framework from each group was examined by using a scanning electron microscope (SEM) at ×100 magnification. The data obtained were statistically analyzed by using 2-way ANOVA, the pairwise Tukey honestly significant difference (HSD), and simple main effect tests to detect the difference between group mean values (α=.05).

Results: The mean ±standard deviation of fracture load value before dynamic loading was 1919 ±193 N for the 3Y-TZP group and 908 ±99 N for the gradient 5Y-TZP and 3Y-TZP group. In addition, the mean fracture load value after dynamic loading was 1418 ±163 N for the 3Y-TZP group and 716 ±85 N for the gradient 5Y-TZP and 3Y-TZP group. The interaction between the effects of the zirconia material and dynamic loading on the fracture resistance was statistically significant (P=.002). The 3Y-TZP group had a statistically significant, higher fracture load mean value the gradient 5Y-TZP and 3Y-TZP group before and after dynamic loading (P<.001).

Conclusions: The fracture resistance of 3Y-TZP frameworks was significantly higher than that of gradient 5Y-TZP and 3Y-TZP frameworks before and after dynamic loading. Dynamic loading significantly reduced the fracture resistance of 3Y-TZP and gradient 5Y-TZP and 3Y-TZP frameworks.

MeSH terms

  • Dental Materials* / chemistry
  • Dental Stress Analysis
  • Denture, Partial, Fixed
  • Materials Testing
  • Surface Properties
  • Yttrium* / chemistry
  • Zirconium / chemistry

Substances

  • Dental Materials
  • yttria
  • zirconium oxide
  • Yttrium
  • Zirconium