Data Integration Using Tensor Decomposition for the Prediction of miRNA-Disease Associations

IEEE J Biomed Health Inform. 2022 May;26(5):2370-2378. doi: 10.1109/JBHI.2021.3125573. Epub 2022 May 5.

Abstract

Dysfunction of miRNAs has an important relationship with diseases by impacting their target genes. Identifying disease-related miRNAs is of great significance to prevent and treat diseases. Integrating information of genes related miRNAs and/or diseases in calculational methods for miRNA-disease association studies is meaningful because of the complexity of biological mechanisms. Therefore, in this study, we propose a novel method based on tensor decomposition, termed TDMDA, to integrate multi-type data for identifying pathogenic miRNAs. First, we construct a three-order association tensor to express the associations of miRNA-disease pairs, the associations of miRNA-gene pairs, and the associations of gene-disease pairs simultaneously. Then, a tensor decomposition-based method with auxiliary information is applied to reconstruct the association tensor for predicting miRNA-disease associations, and the auxiliary information includes biological similarity information and adjacency information. The performance of TDMDA is compared with other advanced methods under 5-fold cross-validations. The experimental results indicate the TDMDA is a competitive method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computational Biology / methods
  • Humans
  • MicroRNAs* / genetics

Substances

  • MicroRNAs