Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning
- PMID: 34759835
- PMCID: PMC8573318
- DOI: 10.3389/fphys.2021.740306
Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning
Abstract
Probabilistic estimation of cardiac electrophysiological model parameters serves an important step toward model personalization and uncertain quantification. The expensive computation associated with these model simulations, however, makes direct Markov Chain Monte Carlo (MCMC) sampling of the posterior probability density function (pdf) of model parameters computationally intensive. Approximated posterior pdfs resulting from replacing the simulation model with a computationally efficient surrogate, on the other hand, have seen limited accuracy. In this study, we present a Bayesian active learning method to directly approximate the posterior pdf function of cardiac model parameters, in which we intelligently select training points to query the simulation model in order to learn the posterior pdf using a small number of samples. We integrate a generative model into Bayesian active learning to allow approximating posterior pdf of high-dimensional model parameters at the resolution of the cardiac mesh. We further introduce new acquisition functions to focus the selection of training points on better approximating the shape rather than the modes of the posterior pdf of interest. We evaluated the presented method in estimating tissue excitability in a 3D cardiac electrophysiological model in a range of synthetic and real-data experiments. We demonstrated its improved accuracy in approximating the posterior pdf compared to Bayesian active learning using regular acquisition functions, and substantially reduced computational cost in comparison to existing standard or accelerated MCMC sampling.
Keywords: Gaussian process; cardiac electrophysiological model; high-dimensional Bayesian optimization; probabilistic parameter estimation; variational autoencoder.
Copyright © 2021 Zaman, Dhamala, Bajracharya, Sapp, Horácek, Wu, Trayanova and Wang.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
Similar articles
-
Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.Med Image Anal. 2018 Aug;48:43-57. doi: 10.1016/j.media.2018.05.007. Epub 2018 May 17. Med Image Anal. 2018. PMID: 29843078 Free PMC article.
-
Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models.Med Image Anal. 2020 May;62:101670. doi: 10.1016/j.media.2020.101670. Epub 2020 Feb 27. Med Image Anal. 2020. PMID: 32171168 Free PMC article.
-
Variational Hamiltonian Monte Carlo via Score Matching.Bayesian Anal. 2018 Jun;13(2):485-506. doi: 10.1214/17-ba1060. Epub 2017 Jul 25. Bayesian Anal. 2018. PMID: 37151569 Free PMC article.
-
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19. Neuroimage. 2017. PMID: 27876654
-
Robust image-based estimation of cardiac tissue parameters and their uncertainty from noisy data.Med Image Comput Comput Assist Interv. 2014;17(Pt 2):9-16. doi: 10.1007/978-3-319-10470-6_2. Med Image Comput Comput Assist Interv. 2014. PMID: 25485357
Cited by
-
Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temperature Measurements.Front Physiol. 2022 Apr 19;13:845896. doi: 10.3389/fphys.2022.845896. eCollection 2022. Front Physiol. 2022. PMID: 35514332 Free PMC article.
-
Global Sensitivity Analysis of Four Chamber Heart Hemodynamics Using Surrogate Models.IEEE Trans Biomed Eng. 2022 Oct;69(10):3216-3223. doi: 10.1109/TBME.2022.3163428. Epub 2022 Sep 19. IEEE Trans Biomed Eng. 2022. PMID: 35353691 Free PMC article.
-
Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification.Front Physiol. 2022 Mar 7;13:757159. doi: 10.3389/fphys.2022.757159. eCollection 2022. Front Physiol. 2022. PMID: 35330935 Free PMC article.
References
-
- Adams R. P., Murray I., MacKay D. J. (2008). The gaussian process density sampler, in Advances in Neural Information Processing Systems 21 (NIPS 2008) (Vancouver, BC: ), 9–16.
-
- Aliev R. R., Panfilov A. V. (1996). A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7, 293–301. 10.1016/0960-0779(95)00089-5 - DOI
-
- Andrieu C., De Freitas N., Doucet A., Jordan M. I. (2003). An introduction to mcmc for machine learning. Mach. Learn. 50, 5–43. 10.1023/A:1020281327116 - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
