Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury

Science. 2021 Nov 12;374(6569):848-856. doi: 10.1126/science.abh3602. Epub 2021 Nov 11.

Abstract

[Figure: see text].

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Survival
  • Computer Simulation
  • Human Umbilical Vein Endothelial Cells / physiology
  • Humans
  • Integrin beta1 / metabolism
  • Laminin / chemistry
  • Laminin / metabolism
  • Mice
  • Motor Neurons / physiology
  • Nanofibers*
  • Neovascularization, Physiologic
  • Neural Stem Cells / physiology
  • Peptides* / chemistry
  • Peptidomimetics / chemistry
  • Polymers / chemistry
  • Protein Conformation, beta-Strand
  • Receptor, Fibroblast Growth Factor, Type 2 / metabolism
  • Recovery of Function
  • Signal Transduction
  • Spinal Cord Injuries / therapy*
  • Spinal Cord Regeneration*
  • Surface-Active Agents
  • Tissue Scaffolds*

Substances

  • Integrin beta1
  • Itgb1 protein, mouse
  • Laminin
  • Peptides
  • Peptidomimetics
  • Polymers
  • Surface-Active Agents
  • Fgfr2 protein, mouse
  • Receptor, Fibroblast Growth Factor, Type 2