Decentralized P2P Electricity Trading Model for Thailand

Sensors (Basel). 2021 Nov 8;21(21):7413. doi: 10.3390/s21217413.


Thailand's power system has been facing an energy transition due to the increasing amount of Renewable Energy (RE) integration, prosumers with self-consumption, and digitalization-based business models in a Local Energy Market (LEM). This paper introduces a decentralized business model and a possible trading platform for electricity trading in Thailand's Micro-Grid to deal with the power system transformation. This approach is Hybrid P2P, a market structure in which sellers and buyers negotiate on energy exchanging by themselves called Fully P2P trading or through the algorithm on the market platform called Community-based trading. A combination of Auction Mechanism (AM), Bill Sharing (BS), and Traditional Mechanism (TM) is the decentralized price mechanism proposed for the Community-based trading. The approach is validated through a test case in which, during the daytime, the energy import and export of the community are significantly reduced when 75 consumers and 25 PV rooftop prosumers participate in this decentralized trading model. Furthermore, a comparison analysis confirms that the decentralized business model outperforms a centralized approach on community and individual levels.

Keywords: Thailand energy transition; auction mechanism; decentralized electricity trading; local energy market; peer-to-peer.

MeSH terms

  • Algorithms
  • Electricity*
  • Renewable Energy*
  • Thailand