Tracking the movement of discrete gating charges in a voltage-gated potassium channel

Elife. 2021 Nov 15:10:e58148. doi: 10.7554/eLife.58148.

Abstract

Positively charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1 and R2) in the Shaker potassium channel voltage sensor using a fluorescent positively charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole-Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage-sensitive phosphatase (CiVSP).

Keywords: bimane; fluorescence quenching; molecular biophysics; sensor path; shaker; structural biology; voltage sensor; xenopus.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biophysical Phenomena
  • Bridged Bicyclo Compounds, Heterocyclic
  • Ciona intestinalis / enzymology
  • Ion Channel Gating / physiology*
  • Membrane Potentials
  • Potassium Channels / physiology*
  • Potassium Channels, Voltage-Gated / physiology*
  • Shaker Superfamily of Potassium Channels
  • Tryptophan / chemistry
  • Xenopus laevis

Substances

  • Bridged Bicyclo Compounds, Heterocyclic
  • Potassium Channels
  • Potassium Channels, Voltage-Gated
  • Shaker Superfamily of Potassium Channels
  • bimanes
  • Tryptophan