Practice Effects of Mobile Tests of Cognition, Dexterity, and Mobility on Patients With Multiple Sclerosis: Data Analysis of a Smartphone-Based Observational Study

J Med Internet Res. 2021 Nov 18;23(11):e30394. doi: 10.2196/30394.


Background: Smartphones and their built-in sensors allow for measuring functions in disease-related domains through mobile tests. This could improve disease characterization and monitoring, and could potentially support treatment decisions for multiple sclerosis (MS), a multifaceted chronic neurological disease with highly variable clinical manifestations. Practice effects can complicate the interpretation of both improvement over time by potentially exaggerating treatment effects and stability by masking deterioration.

Objective: The aim of this study is to identify short-term learning and long-term practice effects in 6 active tests for cognition, dexterity, and mobility in user-scheduled, high-frequency smartphone-based testing.

Methods: We analyzed data from 264 people with self-declared MS with a minimum of 5 weeks of follow-up and at least 5 repetitions per test in the Floodlight Open study, a self-enrollment study accessible by smartphone owners from 16 countries. The collected data are openly available to scientists. Using regression and bounded growth mixed models, we characterized practice effects for the following tests: electronic Symbol Digit Modalities Test (e-SDMT) for cognition; Finger Pinching and Draw a Shape for dexterity; and Two Minute Walk, U-Turn, and Static Balance for mobility.

Results: Strong practice effects were found for e-SDMT (n=4824 trials), Finger Pinching (n=19,650), and Draw a Shape (n=19,019) with modeled boundary improvements of 40.8% (39.9%-41.6%), 86.2% (83.6%-88.7%), and 23.1% (20.9%-25.2%) over baseline, respectively. Half of the practice effect was reached after 11 repetitions for e-SDMT, 28 repetitions for Finger Pinching, and 17 repetitions for Draw a Shape; 90% was reached after 35, 94, and 56 repetitions, respectively. Although baseline performance levels were highly variable across participants, no significant differences between the short-term learning effects in low performers (5th and 25th percentile), median performers, and high performers (75th and 95th percentile) were found for e-SDMT up to the fifth trial (β=1.50-2.00). Only small differences were observed for Finger Pinching (β=1.25-2.5). For U-Turn (n=15,051) and Static Balance (n=16,797), only short-term learning effects could be observed, which ceased after a maximum of 5 trials. For Two Minute Walk (n=14,393), neither short-term learning nor long-term practice effects were observed.

Conclusions: Smartphone-based tests are promising for monitoring the disease trajectories of MS and other chronic neurological diseases. Our findings suggest that strong long-term practice effects in cognitive and dexterity functions have to be accounted for to identify disease-related changes in these domains, especially in the context of personalized health and in studies without a comparator arm. In contrast, changes in mobility may be more easily interpreted because of the absence of long-term practice effects, even though short-term learning effects might have to be considered.

Keywords: digital biomarkers; information processing speed; learning curves; learning effects; mobile phones; multiple sclerosis; nonlinear mixed models; practice effects; quantile regression; smartphones; symbol digit modalities test; wearable electronic devices.

Publication types

  • Observational Study

MeSH terms

  • Cognition
  • Data Analysis
  • Humans
  • Multiple Sclerosis* / diagnosis
  • Neuropsychological Tests
  • Smartphone*