Stereotactic radiosurgery for IDH wild type glioblastoma: an international, multicenter study

J Neurooncol. 2021 Nov 19. doi: 10.1007/s11060-021-03883-8. Online ahead of print.

Abstract

Objective: Isocitrate dehydrogenase (IDH) mutation status is recommended used for diagnosis and prognostication of glioblastoma patients. We studied efficacy and safety of stereotactic radiosurgery (SRS) for patients with recurrent IDH-wt glioblastoma.

Methods: Consecutive patients treated with SRS for IDH-wt glioblastoma were pooled for this retrospective observational international multi-institutional study from institutions participating in the International Radiosurgery Research Foundation.

Results: Sixty patients (median age 61 years) underwent SRS (median dose 15 Gy and median treatment volume: 7.01 cm3) for IDH-wt glioblastoma. All patients had histories of surgery and chemotherapy with temozolomide, and 98% underwent fractionated radiation therapy. MGMT status was available for 42 patients, of which half of patients had MGMT mutant glioblastomas. During median post-SRS imaging follow-up of 6 months, 52% of patients experienced tumor progression. Median post-SRS progression free survival was 4 months. SRS prescription dose of > 14 Gy predicted longer progression free survival [HR 0.357 95% (0.164-0.777) p = 0.009]. Fifty-percent of patients died during post-SRS clinical follow-up that ranged from 1 to 33 months. SRS treatment volume of > 5 cc emerged as an independent predictor of shorter post-SRS overall survival [HR 2.802 95% CI (1.219-6.444) p = 0.02]. Adverse radiation events (ARE) suggestive of radiation necrosis were diagnosed in 6/55 (10%) patients and were managed conservatively in the majority of patients.

Conclusions: SRS prescription dose of > 14 Gy is associated with longer progression free survival while tumor volume of > 5 cc is associated with shorter overall survival after SRS for IDH-wt glioblastomas. AREs are rare and are typically managed conservatively.

Keywords: Glioblastoma; Isocitrate dehydrogenase; O6-methylguanine-DNA methyltransferase; Radiosurgery.