High-Efficiency Air Filter Media with a Three-Dimensional Network Composed of Core-Shell Zeolitic Imidazolate Framework-8@Tunicate Nanocellulose for PM0.3 Removal

ACS Appl Mater Interfaces. 2021 Dec 8;13(48):57921-57929. doi: 10.1021/acsami.1c17052. Epub 2021 Nov 19.

Abstract

Particulate matter (PM) in air has seriously endangered human health. Especially, PM0.3 can easily enter the lungs and blood through breathing. Herein, an air filter with a three-dimensional (3D) network consisting of core-shell structured fibers was designed by in situ growth of zeolitic imidazolate framework-8 on tunicate nanocellulose/glass fiber composite filter media (ZIF-8@TNC/GF). The filtration performance of the obtained ZIF-8@TNC/GF membranes against sodium chloride particles with the MPPS (most penetrating particle size) was investigated. The air filter media at the optimal ratio of ZIF-8 exhibited an ultrahigh efficiency of 99.998% and a quality factor of 0.0308 Pa-1 for PM0.3. Further characterizations showed that the ZIF-8@TNC/GF air filter had a hierarchical and rich pore structure, showing a large specific surface area (50.3 m2 g-1). More significantly, compared with the TNC/GF prepared by the dipping method, TNCs changed from the original two-dimensional (2D) nonuniform network to a uniform 3D network after the ZIF-8 was introduced. Moreover, the ZIF-8@TNC fibers with a core-shell structure inhibited the aggregation of nanocellulose. This study will shed light on the fabrication of high-efficiency TNC composite air filter media with fluffy 3D networks.

Keywords: 3D networks; ZIF-8; core−shell structure; high-efficiency air filter media; tunicate nanocellulose.