Regulation of Inflammatory Response and Osteogenesis to Citrate-Based Biomaterials through Incorporation of Alkaline Fragments
- PMID: 34797950
- DOI: 10.1002/adhm.202101590
Regulation of Inflammatory Response and Osteogenesis to Citrate-Based Biomaterials through Incorporation of Alkaline Fragments
Abstract
A proper pH microenvironment is crucial to mobilizing regeneration function of biomaterials. Neutralizing the acidity in bone defects with alkaline substances is a promising strategy to create favorable environments for cell proliferation and bone repair. In this study, to neutralize the acidity and reduce the inflammation caused by the rapid release of citric acid, a novel citrate-based biodegradable elastomeric poly(citric acid-1,8-octanediol-1,4-bis(2-hydroxyethyl)piperazine (BHEp)) (POPC) is synthesized with the introduction of the alkaline fragment BHEp, and then POPC/β-tricalcium phosphate (β-TCP) porous scaffolds are fabricated by 3D printing technique. The results reveal that the alkaline fragment BHEp effectively corrects the acid environment and improves the biocompatibility, cells affinity and promoted cell adhesion, and proliferation of POPC. Furthermore, the improved pH of POPC15/β-TCP (PTCP15) enhances the adhesion and the proliferation of rabbit bone marrow mesenchymal stem cells, and the expression of osteogenesis-related genes. Moreover, PTCP15 scaffolds relieve inflammatory response and switch RAW 264.7 toward a prohealing extreme. The rat femoral defect model further demonstrates good biocompatibility and enhanced bone regeneration of PTCP15. In conclusion, the results offer a promising approach for biodegradable polymers to address the degradation acidity issue. Meanwhile, a positive regulation strategy is provided for biopolymer to enhance cell proliferation, osteogenic differentiation, and bone repair.
Keywords: citrate-based biomaterials; inflammation; osteogenesis; pH.
© 2021 Wiley-VCH GmbH.
Similar articles
-
3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation.Biochem Biophys Res Commun. 2019 May 14;512(4):889-895. doi: 10.1016/j.bbrc.2019.03.132. Epub 2019 Mar 28. Biochem Biophys Res Commun. 2019. PMID: 30929923
-
Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.Int J Biol Macromol. 2017 Feb;95:14-23. doi: 10.1016/j.ijbiomac.2016.11.002. Epub 2016 Nov 3. Int J Biol Macromol. 2017. PMID: 27818295
-
Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration.Acta Biomater. 2019 Jul 15;93:180-191. doi: 10.1016/j.actbio.2019.03.050. Epub 2019 Mar 27. Acta Biomater. 2019. PMID: 30926580 Free PMC article.
-
Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair.J Mater Chem B. 2023 Mar 15;11(11):2307-2333. doi: 10.1039/d2tb02563a. J Mater Chem B. 2023. PMID: 36809480 Review.
-
Flavonoid-Loaded Biomaterials in Bone Defect Repair.Molecules. 2023 Sep 30;28(19):6888. doi: 10.3390/molecules28196888. Molecules. 2023. PMID: 37836731 Free PMC article. Review.
Cited by
-
Magnesium Hydroxide as a Versatile Nanofiller for 3D-Printed PLA Bone Scaffolds.Polymers (Basel). 2024 Jan 9;16(2):198. doi: 10.3390/polym16020198. Polymers (Basel). 2024. PMID: 38256997 Free PMC article.
-
Small-molecule amines: a big role in the regulation of bone homeostasis.Bone Res. 2023 Jul 24;11(1):40. doi: 10.1038/s41413-023-00262-z. Bone Res. 2023. PMID: 37482549 Free PMC article. Review.
-
Potential application of inorganic nano-materials in modulation of macrophage function: Possible application in bone tissue engineering.Heliyon. 2023 May 27;9(6):e16309. doi: 10.1016/j.heliyon.2023.e16309. eCollection 2023 Jun. Heliyon. 2023. PMID: 37292328 Free PMC article. Review.
-
A SiO2 layer on PEO-treated Mg for enhanced corrosion resistance and bone regeneration.Front Bioeng Biotechnol. 2022 Dec 23;10:1053944. doi: 10.3389/fbioe.2022.1053944. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36619395 Free PMC article.
-
Enhanced Bactericidal Effect of Calcinated Mg-Fe Layered Double Hydroxide Films Driven by the Fenton Reaction.Int J Mol Sci. 2022 Dec 23;24(1):272. doi: 10.3390/ijms24010272. Int J Mol Sci. 2022. PMID: 36613712 Free PMC article.
References
-
- a) H. C. Blair, Q. C. Larrouture, I. L. Tourkova, L. Li, B. J. Hao, B. S. Donna, D. J. Nelson, P. H. Schlesinger, Am. J. Phys. Cell Physiol. 2018, 315, C587;
-
- b) M. Cicuéndez, J. C. Doadrio, A. Hernández, M. T. Portolés, I. B. Isabel, V. R. María, Acta Biomater. 2017, 65, 450.
-
- A. Brandao-Burch, J. C. Utting, I. R. Orriss, T. R. Arnett, Calcifed Tissue Int. 2005, 77, 167.
-
- a) Z. Zhang, Q. Lai, Y. Li, C. Xu, X. Tang, J. Ci, S. Sun, B. Xu, Y. Li, Sci. Rep. 2017, 7, 46161;
-
- b) K. K. Kaysinger, W. K. Ramp, J. Cell. Biochem. 1998, 68, 83.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
