Acidic pH reduces agonist efficacy and responses to synaptic-like glycine applications in zebrafish α1 and rat α1β recombinant glycine receptors

J Physiol. 2021 Nov 21. doi: 10.1113/JP282171. Online ahead of print.

Abstract

Key points: Extracellular pH in the central nervous system (CNS) is known to shift towards acidic values during pathophysiological conditions such as ischaemia and seizures. Acidic extracellular pH is known to affect GABAergic inhibitory synapses, but its effect on signals mediated by glycine receptors (GlyR) is not well characterized. Moderate acidic conditions (pH 6.4) reduce the maximum single channel open probability of recombinant homomeric GlyRs produced by the neurotransmitter glycine or other agonists, such as β-alanine and taurine. When glycine was applied with a piezoelectric stepper to outside out patches, to simulate its fast rise and short duration at the synapse, responses became shorter and smaller at pH 6.4. The effect was also observed with physiologically low intracellular chloride and mammalian heteromeric GlyRs. This suggests that acidic pH is likely to reduce the strength of inhibitory signalling at glycinergic synapses.

Abstract: Many pentameric ligand-gated ion channels are modulated by extracellular pH. Glycine receptors (GlyR) share this property, but it is not well understood how they are affected by pH changes. Whole cell experiments on HEK293 cells expressing zebrafish homomeric α1 GlyR confirmed previous reports that acidic pH (6.4) reduces GlyR sensitivity to glycine, whereas alkaline pH (8.4) has small or negligible effects. In addition to that, at pH 6.4 we observed a reduction in the maximum response to the partial agonists β-alanine and taurine relative to the full agonist glycine. In cell-attached single-channel recording low pH reduced agonist efficacy, as the maximum open probability decreased from 0.97, 0.91 and 0.66 to 0.93, 0.57 and 0.34 for glycine, β-alanine and taurine, respectively, reflecting a 3-fold decrease in efficacy equilibrium constants for all three agonists. We also tested the effect of pH 6.4 in conditions that replicate those at the native synapse, recording outside-out currents elicited by fast application of millisecond pulses of agonists on α1 and α1β GlyR, at a range of intracellular chloride concentrations. Acidic pH reduced the area under the curve of the currents, by reducing peak amplitude, slowing activation and speeding deactivation. Our results show that acidification of the extracellular pH by one unit, as may occur in pathological conditions, such as ischaemia, impairs GlyR gating and is likely to reduce the effectiveness of glycinergic synaptic inhibition. This article is protected by copyright. All rights reserved.

Keywords: glycine receptors; pH changes; single channel.