[The molecular mechanism of oxaliplatin-induced peripheral neuropathic pain]

Zhonghua Yi Xue Za Zhi. 2021 Nov 23;101(43):3581-3587. doi: 10.3760/cma.j.cn112137-20210513-01127.
[Article in Chinese]

Abstract

Objective: To investigate the molecular mechanism of oxaliplatin-induced chemotherapy-induced peripheral neuropathic pain (CIPNP). Methods: A total of 16 male Sprague-Dawley rats of specific pathogen-free grade were randomly divided into two groups: oxaliplatin experimental group (2.4 mg/kg oxaliplatin dissolved in 5.0% glucose solution, n=8) and control group (equal volume 5% glucose solution, n=8). The rat model of CIPNP was established by continuous administration with oxaliplatin. In addition, mechanical allodynia, thermal hyperalgesia and cold hyperalgesia were measured and compared between the two groups. To explore the molecular mechanism of oxaliplatin-induced CIPNP, the gene expression of dorsal root ganglia (DRG) from the rat model of CIPNP was analyzed using RNA sequencing (RNA-Seq). Results: Mechanical and thermal hypersensitivity was exhibited on day 7 and a stronger hypersensitivity was observed on day 14. A total of 20 152 genes were quantified by RNA-Seq, and 379 differentially expressed genes (DEGs) were obtained with absolute fold change cut-offs ≥ 2 and P value<0.05. There were 7 genes (Npy, Car3, Cdkn1a, Nts, Prc1, Ms4a7 and Ecel1) that were involved in peripheral nerve injury-related neuropathic pain. Gene ontology (GO) functional enrichment analyses indicated that the DEGs induced by oxaliplatin were involved in oxygen transport, cell division, intermediate, centromere, oxygen transporter activity, oxygen binding. Moreover, the result of Kyoto Encyclopedia of genes and genomes (KEGG) analyses highlighted that the DEGs induced by oxaliplatin were involved in malaria, African trypanosomiasis, primary immunodeficiency, peroxisome proliferator activated receptor (PPAR) signaling pathway. Conclusion: Oxaliplatin induces CIPNP via pain-related genes and signaling pathways.

目的: 探讨奥沙利铂诱导化疗引起的周围神经病理性疼痛(CIPNP)的分子机制。 方法: SPF级SD雄性大鼠16只采用随机数字表法分为两组:奥沙利铂实验组(5.0%葡萄糖溶液中溶解2.4 mg/kg奥沙利铂,n=8)和对照组(等体积5%的葡萄糖溶液,n=8)。通过奥沙利铂连续给药建立大鼠CIPNP模型,测定并比较两组大鼠机械性痛觉、热痛觉过敏、冷痛觉过敏等疼痛行为学指标。采用RNA测序技术对大鼠背根神经节(DRG)基因转录组水平进行定量,分析奥沙利铂诱导CIPNP的分子机制。 结果: 实验组大鼠在第7天开始出现机械痛觉异常和冷热痛觉过敏,在第14天达到最强。通过转录组测序,共定量到20 152个基因,以组间差异倍数绝对值≥2和P<0.05的标准筛选到379个差异表达基因(DEG);其中Npy、Car3、Cdkn1a、Nts、Prc1、Ms4a7和Ecel1 7个基因为外周神经损伤疼痛相关基因。通过基因本体论功能分析,奥沙利铂诱导的差异表达基因主要参与氧运输、细胞分裂、中间体、着丝粒、氧转运蛋白活性、氧结合等功能。通过京都基因与基因组百科全书信号通路(KEGG)分析,奥沙利铂诱导的差异表达基因主要参与疟疾、非洲锥虫病、原发性免疫缺陷、过氧化物酶体增殖物激活受体信号通路(PPAR)等。 结论: 奥沙利铂可能通过诱导疼痛相关基因以及相关信号通路引起外周神经性疼痛。.

MeSH terms

  • Animals
  • Ganglia, Spinal
  • Hyperalgesia / chemically induced
  • Male
  • Neuralgia* / chemically induced
  • Oxaliplatin
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Oxaliplatin