Measurement Method for the Simultaneous DeterMination of Thermal Resistance and Temperature Gradients in the DeterMination of Thermal Properties of Textile Material Layers

Materials (Basel). 2021 Nov 13;14(22):6853. doi: 10.3390/ma14226853.


The thermal properties of most clothing products are still not designed according to engineering science due to the lack of simple and acceptable measuring equipment and methods; the type of thermal insulation material, the number of layers of clothing and their thickness are thus chosen empirically. The novelty of this study was the development of a new measuring device and method for simultaneous measurements in the determination of the thermal resistance in one or more textile material layers, such as in multilayer composite clothing. Temperature gradients of textile material layers are presented, as well as the theoretical principles of operation and practical results. Four materials for the production of protective jackets were selected, from which different combinations of composite clothing were constructed and the thermal parameters were measured with a new method and a new device, both individually for the built-in materials and for the composites. Subsequently, five test jackets with the same arrangement of textile material layers as the previously tested composites were produced, and measurements of important thermal parameters were recorded with a thermal mannequin. The determined temperature gradients and measurement results are presented, and based on these it was determined that the total thermal resistance was not equal to the algebraic sum of the resistances of the individual textile material layers in the horizontal position; it was, however, higher, increasing from 30% to 94% due to small air layers caused by crimping and protruding fibres of yarn in the textile fabrics. The same textile material layers built into clothing in the vertical position allowed the formation of significantly wider air layers that increased the thermal resistance by between 2.5 and 9 times.

Keywords: composite clothing; temperature gradient; textile material layers; thermal resistance.