Dynamics-Adapted Radiotherapy Dose (DARD) for Head and Neck Cancer Radiotherapy Dose Personalization

J Pers Med. 2021 Nov 1;11(11):1124. doi: 10.3390/jpm11111124.


Standard of care radiotherapy (RT) doses have been developed as a one-size-fits all approach designed to maximize tumor control rates across a population. Although this has led to high control rates for head and neck cancer with 66-70 Gy, this is done without considering patient heterogeneity. We present a framework to estimate a personalized RT dose for individual patients, based on pre- and early on-treatment tumor volume dynamics-a dynamics-adapted radiotherapy dose (DDARD). We also present the results of an in silico trial of this dose personalization using retrospective data from a combined cohort of n = 39 head and neck cancer patients from the Moffitt and MD Anderson Cancer Centers that received 66-70 Gy RT in 2-2.12 Gy weekday fractions. This trial was repeated constraining DDARD between (54, 82) Gy to test more moderate dose adjustment. DDARD was estimated to range from 8 to 186 Gy, and our in silico trial estimated that 77% of patients treated with standard of care were overdosed by an average dose of 39 Gy, and 23% underdosed by an average dose of 32 Gy. The in silico trial with constrained dose adjustment estimated that locoregional control could be improved by >10%. We demonstrated the feasibility of using early treatment tumor volume dynamics to inform dose personalization and stratification for dose escalation and de-escalation. These results demonstrate the potential to both de-escalate most patients, while still improving population-level control rates.

Keywords: dose personalization; head and neck cancer; mathematical modeling; radiotherapy.