Household Transmission of SARS-CoV-2: A Prospective Longitudinal Study Showing Higher Viral Load and Increased Transmissibility of the Alpha Variant Compared to Previous Strains

Microorganisms. 2021 Nov 17;9(11):2371. doi: 10.3390/microorganisms9112371.


We studied the secondary attack rate (SAR), risk factors, and precautionary practices of household transmission in a prospective, longitudinal study. We further compared transmission between the Alpha (B.1.1.7) variant and non-Variant of Concern (non-VOC) viruses. From May 2020 throughout April 2021, we recruited 70 confirmed COVID-19 cases with 146 household contacts. Participants donated biological samples eight times over 6 weeks and answered questionnaires. SARS-CoV-2 infection was detected by real-time RT-PCR. Whole genome sequencing and droplet digital PCR were used to establish virus variant and viral load. SARS-CoV-2 transmission occurred in 60% of the households, and the overall SAR for household contacts was 50%. The SAR was significantly higher for the Alpha variant (78%) compared with non-VOC viruses (43%) and was associated with a higher viral load. SAR was higher in household contacts aged ≥40 years (69%) than in younger contacts (40-47%), and for contacts of primary cases with loss of taste/smell. Children had lower viral loads and were more often asymptomatic than adults. Sleeping separately from the primary case reduced the risk of transmission. In conclusion, we found substantial household transmission, particularly for the Alpha variant. Precautionary practices seem to reduce SAR, but preventing household transmission may become difficult with more contagious variants, depending on vaccine use and effectiveness.

Keywords: Alpha variant; B.1.1.7; COVID-19; SAR; SARS-CoV-2; ddPCR; household transmission; secondary attack rate; viral load.