Stable Field Emission from Vertically Oriented SiC Nanoarrays

Nanomaterials (Basel). 2021 Nov 11;11(11):3025. doi: 10.3390/nano11113025.

Abstract

Silicon carbide (SiC) nanostructure is a type of promising field emitter due to high breakdown field strength, high thermal conductivity, low electron affinity, and high electron mobility. However, the fabrication of the SiC nanotips array is difficult due to its chemical inertness. Here we report a simple, industry-familiar reactive ion etching to fabricate well-aligned, vertically orientated SiC nanoarrays on 4H-SiC wafers. The as-synthesized nanoarrays had tapered base angles >60°, and were vertically oriented with a high packing density >107 mm-2 and high-aspect ratios of approximately 35. As a result of its high geometry uniformity-5% length variation and 10% diameter variation, the field emitter array showed typical turn-on fields of 4.3 V μm-1 and a high field-enhancement factor of ~1260. The 8 h current emission stability displayed a mean current fluctuation of 1.9 ± 1%, revealing excellent current emission stability. The as-synthesized emitters demonstrate competitive emission performance that highlights their potential in a variety of vacuum electronics applications. This study provides a new route to realizing scalable field electron emitter production.

Keywords: field emission; nanoarrays; one-dimensional nanomaterials; silicon carbide.