Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges

Adv Biol (Weinh). 2022 Jan;6(1):e2000526. doi: 10.1002/adbi.202000526. Epub 2021 Nov 27.

Abstract

New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.

Keywords: biomaterials; human-on-a-chip; microfluidic; organ-on-a-chip; tissue engineering.

Publication types

  • Review

MeSH terms

  • Cell Culture Techniques, Three Dimensional*
  • Humans
  • Lab-On-A-Chip Devices*
  • Microfluidics