Antagonistic and plant growth promotion effects of Mucor moelleri, a potential biocontrol agent

Microbiol Res. 2021 Nov 18:255:126922. doi: 10.1016/j.micres.2021.126922. Online ahead of print.

Abstract

With the increasing demand for high quality and environmentally safe or green food, Biological Control Agents (BCAs) are playing critical roles in green agriculture, which in turn has paved the way for the requirement of effective, appropriate microbial antagonists. In this study, Mucor moelleri AA1 was isolated and investigated for its growth promotion and antagonism against Athelia rolfsii and Colletotrichum gloeosporiodes. The results showed a high antagonistic activity of M. moelleri against A. rolfsii and C. gloeosporiodes with percentage inhibitions of 73 % and 86 % respectively using the dual plate method, and the same antagonistic activity was also observed in liquid cocultures. A pot study analysis showed significant suppression of the diseases as well as growth promotion on tomato. Scanning electron microscopy (SEM) indicated that M. moelleri inhibited the growth of mycelium and the production of web-like materials. Based on headspace-solid phase microextraction (HS-SPME) analysis, microbial volatile compounds were determined, which were mainly aromatic compounds and alkaloids. Also, several antagonistic enzymes, such as β-1, 3- glucanase, proteases, catalase and ACC deaminase as well as the phytohormone IAA, were found to be produced by M. moelleri. Overall, these results combine to make M. moelleri a good prospective candidate for biological control and as a plant growth-promoting agent. The present study appears to be the first report identifying M. moelleri as a biological control agent.

Keywords: Antagonism; Mucor moelleri; Plant growth promotion; Volatile compounds.