Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep

Theriogenology. 2022 Feb;179:78-86. doi: 10.1016/j.theriogenology.2021.11.008. Epub 2021 Nov 16.

Abstract

Heat stress not only affects the physical condition but also affects reproductive performance in sheep. A thorough understanding of the molecular and physiological mechanisms underlying heat stress would certainly improve livestock productivity and provide genetic evaluation ways for heat resistant breeds selection. In this study, 85 Turpan Black sheep, a breed exhibited excellent heat resistance from long-term artificial selection, and 85 heat sensitive Kazakh sheep in Turpan basin were tested for physiological and reproductive performance from July to August in summer. The results showed that the estrus rate was significantly higher in Turpan Black sheep (P < 0.05), while the heart rate and respiratory rate of Turpan Black sheep are significantly lower than that of Kazakh sheep (P < 0.05). Furthermore, to clarify genes participated in heat stress response, the pituitary, ovarian and hepatic tissues from three Turpan Black sheep and three Kazakh sheep were subjected to RNA-seq. The results indicated that 32, 49 and 69 genes were up-regulated, and 39, 60 and 145 genes were down-regulated in pituitary, ovarian and hepatic tissues in Turpan Black sheep compared with that of the Kazakh sheep, respectively. KEGG and gene set enrichment analysis showed that the differentially expressed genes were mainly involved in signal transduction pathways. In particular, the differentially expressed genes in hepar were enriched in the energy metabolism pathway, while the differentially expressed genes in ovarian tissue were enriched in the ovarium steroidogenesis pathway. In conclusion, our results implied that the pituitary-ovary axis might include hepar as downstream targeted organism in heat resistant regulation. Under heat stress, the signals released from pituitary would impact steroidogenesis in ovary, and further alter energy metabolism in hepar. As we know, this is the first comparative study to investigate the gene expression in multi-tissue in sheep under heat stress.

Keywords: Heat stress; RNA-seq; Signal transduction; Turpan Black sheep.

MeSH terms

  • Animals
  • Estrus
  • Female
  • Gene Expression Profiling* / veterinary
  • Ovary
  • RNA-Seq / veterinary
  • Transcriptome*