Histamine-gated chloride channels (HACls) mediate fast inhibitory neurotransmission in invertebrate nervous systems and have important roles in light reception, color processing, temperature preference and light-dark cycle. The fall armyworm, Spodoptera frugiperda is a main destructive pest of grain and row crops. However, the pharmacological characterization of HACls in S. frugiperda remain unknown. In this study, we identified two cDNAs encoding SfHACl1 and SfHACl2 in S. frugiperda. They had similar expression patterns and were most abundantly expressed in the head of larvae and at the egg stage. Electrophysiological analysis with the two-electrode voltage clamp method showed that histamine (HA) and γ-aminobutyric acid (GABA) activated inward currents when SfHACls were singly or collectively expressed with different ratios in Xenopus laevis oocytes. These channels were ≥2000-fold more sensitive to HA than to GABA. They were anion-selective channels, which were highly dependent on changes in external chloride concentrations, but insensitive to changes in external sodium concentrations. The insecticides abamectin (ABM) and emamectin benzoate (EB) also activated these channels with the EC50 to SfHACl1 lower than that to SfHACl2. And the EC50s of ABM and EB to the co-expressed channels gradually increased with increase in the injection ratio of SfHACl2 cRNA. Homology models and docking simulations revealed that HA bound to the large amino-terminal extracellular domain of SfHACl1 and SfHACl2 by forming 4 and 2 hydrogen bonds, respectively. The docking simulations of ABM and EB had similar binding sites in the transmembrane regions. Overall, these findings indicated that HACls act as targets for macrolide, and this study provides theoretical guidance for further derivatization of abamectin insecticides.
Keywords: Abamectin; Emamectin benzoate; Histamine-gated chloride channel; Pharmacology; Spodoptera frugiperda.
Copyright © 2021 Elsevier Ltd. All rights reserved.