A novel transposable element-based authentication protocol for Drosophila cell lines

G3 (Bethesda). 2022 Feb 4;12(2):jkab403. doi: 10.1093/g3journal/jkab403.

Abstract

Drosophila cell lines are used by researchers to investigate various cell biological phenomena. It is crucial to exercise good cell culture practice. Poor handling can lead to both inter- and intra-species cross-contamination. Prolonged culturing can lead to introduction of large- and small-scale genomic changes. These factors, therefore, make it imperative that methods to authenticate Drosophila cell lines are developed to ensure reproducibility. Mammalian cell line authentication is reliant on short tandem repeat (STR) profiling; however, the relatively low STR mutation rate in Drosophila melanogaster at the individual level is likely to preclude the value of this technique. In contrast, transposable elements (TEs) are highly polymorphic among individual flies and abundant in Drosophila cell lines. Therefore, we investigated the utility of TE insertions as markers to discriminate Drosophila cell lines derived from the same or different donor genotypes, divergent sub-lines of the same cell line, and from other insect cell lines. We developed a PCR-based next-generation sequencing protocol to cluster cell lines based on the genome-wide distribution of a limited number of diagnostic TE families. We determined the distribution of five TE families in S2R+, S2-DRSC, S2-DGRC, Kc167, ML-DmBG3-c2, mbn2, CME W1 Cl.8+, and ovarian somatic sheath Drosophila cell lines. Two independent downstream analyses of the next-generation sequencing data yielded similar clustering of these cell lines. Double-blind testing of the protocol reliably identified various Drosophila cell lines. In addition, our data indicate minimal changes with respect to the genome-wide distribution of these five TE families when cells are passaged for at least 50 times. The protocol developed can accurately identify and distinguish the numerous Drosophila cell lines available to the research community, thereby aiding reproducible Drosophila cell culture research.

Keywords: Drosophila; authentication; cell lines; transposable element.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line*
  • DNA Transposable Elements* / genetics
  • Drosophila melanogaster / genetics
  • Drosophila* / genetics
  • Genome, Insect
  • Reproducibility of Results

Substances

  • DNA Transposable Elements