Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii
- PMID: 34859122
- PMCID: PMC8595413
- DOI: 10.21769/BioProtoc.4207
Thermal Proteome Profiling to Identify Protein-ligand Interactions in the Apicomplexan Parasite Toxoplasma gondii
Abstract
Toxoplasma gondii is a single-celled eukaryotic parasite that chronically infects a quarter of the global population. In recent years, phenotypic screens have identified compounds that block parasite replication. Unraveling the pathways and molecular mechanisms perturbed by such compounds requires target deconvolution. In parasites, such deconvolution has been achieved via chemogenomic approaches-for example, directed evolution followed by whole-genome sequencing or genome-wide knockout screens. As a proteomic alternative that directly probes the physical interaction between compound and protein, thermal proteome profiling (TPP), also known as the cellular thermal shift assay (CETSA), recently emerged as a method to identify small molecule-target interactions in living cells and cell extracts in a variety of organisms, including unicellular eukaryotic pathogens. Ligand binding induces a thermal stability shift-stabilizing or destabilizing proteins that change conformationally in response to the ligand-that can be measured by mass spectrometry (MS). Cells are incubated with different concentrations of ligand and heated, causing thermal denaturation of proteins. The soluble protein is extracted and quantified with multiplexed, quantitative MS, resulting in thousands of thermal denaturation profiles. Proteins engaging the ligand can be identified by their compound-dependent thermal shift. The protocol provided here can be used to identify ligand-target interactions and assess the impact of environmental or genetic perturbations on the thermal stability of the proteome in T. gondii and other eukaryotic pathogens. Graphic abstract: Thermal proteome profiling for target identification in the apicomplexan parasite T. gondii.
Keywords: CETSA; Parasite; Proteomics; Thermal proteome profiling; Toxoplasma.
Copyright © 2021 The Authors; exclusive licensee Bio-protocol LLC.
Conflict of interest statement
Competing interestsThe authors declare no conflicts or competing interests.
Figures
Similar articles
-
Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways.Elife. 2022 Aug 17;11:e80336. doi: 10.7554/eLife.80336. Elife. 2022. PMID: 35976251 Free PMC article.
-
CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products.Phytomedicine. 2023 Jul 25;116:154862. doi: 10.1016/j.phymed.2023.154862. Epub 2023 May 20. Phytomedicine. 2023. PMID: 37216761 Review.
-
Cellular thermal shift assay: an approach to identify and assess protein target engagement.Expert Rev Proteomics. 2024 Sep-Oct;21(9-10):387-400. doi: 10.1080/14789450.2024.2406785. Epub 2024 Sep 29. Expert Rev Proteomics. 2024. PMID: 39317941 Review.
-
[Thermal proteome profiling: a technique for a comprehensive assessment of protein status].Sheng Wu Gong Cheng Xue Bao. 2022 Oct 25;38(10):3628-3637. doi: 10.13345/j.cjb.220206. Sheng Wu Gong Cheng Xue Bao. 2022. PMID: 36305398 Review. Chinese.
-
Small Molecule Arranged Thermal Proximity Coaggregation (smarTPCA)-A Novel Approach to Characterize Protein-Protein Interactions in Living Cells by Similar Isothermal Dose-Responses.Int J Mol Sci. 2022 May 17;23(10):5605. doi: 10.3390/ijms23105605. Int J Mol Sci. 2022. PMID: 35628420 Free PMC article.
Cited by
-
Cloning, expression, and purification of an α-carbonic anhydrase from Toxoplasma gondii to unveil its kinetic parameters and anion inhibition profile.J Enzyme Inhib Med Chem. 2024 Dec;39(1):2346523. doi: 10.1080/14756366.2024.2346523. Epub 2024 Jun 7. J Enzyme Inhib Med Chem. 2024. PMID: 38847581 Free PMC article.
-
Large-scale characterization of drug mechanism of action using proteome-wide thermal shift assays.Elife. 2024 Nov 11;13:RP95595. doi: 10.7554/eLife.95595. Elife. 2024. PMID: 39526730 Free PMC article.
-
The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii.Nat Commun. 2023 Jun 20;14(1):3659. doi: 10.1038/s41467-023-39436-y. Nat Commun. 2023. PMID: 37339985 Free PMC article.
-
Large-scale characterization of drug mechanism of action using proteome-wide thermal shift assays.bioRxiv [Preprint]. 2024 Aug 14:2024.01.26.577428. doi: 10.1101/2024.01.26.577428. bioRxiv. 2024. Update in: Elife. 2024 Nov 11;13:RP95595. doi: 10.7554/eLife.95595 PMID: 38328090 Free PMC article. Updated. Preprint.
-
Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways.Elife. 2022 Aug 17;11:e80336. doi: 10.7554/eLife.80336. Elife. 2022. PMID: 35976251 Free PMC article.
References
-
- Barylyuk K., Koreny L., Ke H., Butterworth S., Crook O. M., Lassadi I., Gupta V., Tromer E., Mourier T., Stevens T. J., et al. .(2020). A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via hyperLOPIT Provides Spatial Context for Protein Functions. Cell Host Microbe 28(5): 752-766 e759. - PMC - PubMed
-
- Bekker-Jensen D. B., Martinez-Val A., Steigerwald S., Ruther P., Fort K. L., Arrey T. N., Harder A., Makarov A. and Olsen J. V.(2020). A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Mol Cell Proteomics 19(4): 716-729. - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
