Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 19:13:744872.
doi: 10.3389/fnagi.2021.744872. eCollection 2021.

Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study

Affiliations

Higher Coffee Consumption Is Associated With Slower Cognitive Decline and Less Cerebral Aβ-Amyloid Accumulation Over 126 Months: Data From the Australian Imaging, Biomarkers, and Lifestyle Study

Samantha L Gardener et al. Front Aging Neurosci. .

Abstract

Background: Worldwide, coffee is one of the most popular beverages consumed. Several studies have suggested a protective role of coffee, including reduced risk of Alzheimer's disease (AD). However, there is limited longitudinal data from cohorts of older adults reporting associations of coffee intake with cognitive decline, in distinct domains, and investigating the neuropathological mechanisms underpinning any such associations. Methods: The aim of the current study was to investigate the relationship between self-reported habitual coffee intake, and cognitive decline assessed using a comprehensive neuropsychological battery in 227 cognitively normal older adults from the Australian Imaging, Biomarkers, and Lifestyle (AIBL) study, over 126 months. In a subset of individuals, we also investigated the relationship between habitual coffee intake and cerebral Aβ-amyloid accumulation (n = 60) and brain volumes (n = 51) over 126 months. Results: Higher baseline coffee consumption was associated with slower cognitive decline in executive function, attention, and the AIBL Preclinical AD Cognitive Composite (PACC; shown reliably to measure the first signs of cognitive decline in at-risk cognitively normal populations), and lower likelihood of transitioning to mild cognitive impairment or AD status, over 126 months. Higher baseline coffee consumption was also associated with slower Aβ-amyloid accumulation over 126 months, and lower risk of progressing to "moderate," "high," or "very high" Aβ-amyloid burden status over the same time-period. There were no associations between coffee intake and atrophy in total gray matter, white matter, or hippocampal volume. Discussion: Our results further support the hypothesis that coffee intake may be a protective factor against AD, with increased coffee consumption potentially reducing cognitive decline by slowing cerebral Aβ-amyloid accumulation, and thus attenuating the associated neurotoxicity from Aβ-amyloid-mediated oxidative stress and inflammatory processes. Further investigation is required to evaluate whether coffee intake could be incorporated as a modifiable lifestyle factor aimed at delaying AD onset.

Keywords: AIBL; Alzheimer’s disease; Australian Imaging Biomarkers and Lifestyle flagship study of ageing; Aβ-amyloid; caffeine; coffee; cognitive decline; dementia.

PubMed Disclaimer

Conflict of interest statement

VV has served as a consultant for IXICO. CM is an advisor to Prana Biotechnology Ltd., and a consultant to Eli Lilly. PM is a full-time employee of Cogstate Ltd. CR has served on scientific advisory boards for Bayer Pharma, Elan Corporation, GE Healthcare, and AstraZeneca, has received speaker honoraria from Bayer Pharma and GE Healthcare, and has received research support from Bayer Pharma, GE Healthcare, Piramal Lifesciences and Avid Radiopharmaceuticals. RM is founder of, and owns stock in, Alzhyme, and is a co-founder of the KaRa Institute of Neurological Diseases. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1
FIGURE 1
Plot demonstrates higher habitual coffee intake was associated with slower cerebral Aβ-amyloid accumulation. Graphical representation of mean change in cerebral Aβ-amyloid accumulation, ± SD, over 126 months, across tertiles of coffee intake (Low tertile = 0–26 g/day; Middle tertile = 36–250 g/day; High tertile = 360–750 g/day). Model includes age, apolipoprotein E (APOE) ε4 allele carrier status, sex, energy intake, and time from baseline to dietary questionnaire completion. Cerebral Aβ-amyloid burden was measured using positron emission tomography and expressed using the Centiloid (CL) scale.

Similar articles

Cited by

References

    1. Akash M. S., Rehman K., Chen S. (2014). Effects of coffee on type 2 diabetes mellitus. Nutrition 30 755–763. 10.1016/j.nut.2013.11.020 - DOI - PubMed
    1. Angulo E., Casado V., Mallol J., Canela E. I., Viñals F., Ferrer I., et al. (2003). A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol. 13 440–451. 10.1111/j.1750-3639.2003.tb00475.x - DOI - PMC - PubMed
    1. Arab L., Biggs M. L., O’Meara E. S., Longstreth W. T., Crane P. K., Fitzpatrick A. L. (2011). Gender differences in tea, coffee, and cognitive decline in the elderly: the cardiovascular health study. J. Alzheimers Dis. 27 553–566. 10.3233/jad-2011-110431 - DOI - PMC - PubMed
    1. Araujo L. F., Mirza S. S., Bos D., Niessen W. J., Barreto S. M., van der Lugt A., et al. (2016). Association of coffee consumption with MRI markers and cognitive function: a population-based study. J. Alzheimers Dis. 53 451–461. 10.3233/jad-160116 - DOI - PubMed
    1. Arendash G. W., Schleif W., Rezai-Zadeh K., Jackson E. K., Zacharia L. C., Cracchiolo J. R., et al. (2006). Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142 941–952. 10.1016/j.neuroscience.2006.07.021 - DOI - PubMed

LinkOut - more resources