Apparent suicidal inactivation of DNA polymerase by adenosine 2',3'-riboepoxide 5'-triphosphate

J Biol Chem. 1978 May 25;253(10):3415-21.


Adenosine 2',3'-riboepoxide 5'-triphosphate (epoxyATP) has been found to be a suicidal inactivator of DNA polymerase I from Escherichia coli by the following criteria. Inactivation is complete, is first order in enzyme activity, and shows saturation kinetics with an apparent KD of 30 +/- 10 micron for epoxy ATP. This KD is comparable to the KM of the substrate dATP. The t1/2 for inactivation is 1.3 min. Inactivation requires Mg2+ and the complementary template. The enzyme is protected by dATP but not by an excess of template. Gel filtration of the reaction mixture after inactivation with [3H]epoxy ATP results in the comigration of E. coli DNA polymerase I, the tritium-labeled inactivator, and the DNA template. The stoichiometry of binding approaches 1 mol of [3H]epoxy nucleotide per mol of inactivated enzyme. These results are consistent with the hypothesis that epoxy ATP initially serves as a substrate for the polymerase reaction, elongating the DNA chain by a nucleotidyl unit, and subsequently alkylates an essential base at the primer terminus binding site of the enzyme. Epoxy ATP also inactivates human and viral DNA polymerases but not E. coli RNA polymerase or rabbit muscle pyruvate kinase. Hence epoxy ATP may be a specific suicide reagent for DNA polymerases.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / analogs & derivatives*
  • Adenosine Triphosphate / pharmacology
  • DNA Polymerase I / antagonists & inhibitors*
  • Escherichia coli / enzymology
  • Kinetics
  • Nucleic Acid Synthesis Inhibitors*
  • Protein Binding


  • Nucleic Acid Synthesis Inhibitors
  • Adenosine Triphosphate
  • DNA Polymerase I