Beam modeling and commissioning for Monte Carlo photon beam on an Elekta Versa HD LINAC

Appl Radiat Isot. 2022 Feb:180:110054. doi: 10.1016/j.apradiso.2021.110054. Epub 2021 Dec 2.

Abstract

Purpose: This study aims at analyzing beam data commissioning along with verifying Monte Carlo-based treatment planning system on the basis of the manufacturer guidelines for Elekta Versa HD Linear Accelerator. Moreover, evaluating the beam match process in terms of quality index, photon profile and multi leaf collimator (MLC) offset is aimed as well.

Materials and methods: The process of collecting beam data for Monaco 5.51 Treatment Planning System commissioning was done based on the instructions provided by the manufacturer as well as AAPM TG-106. Monte Carlo analysis was done for output factors in water, percent depth dose and beam profiles. A set of eight static and intensity modulated radiation therapy fields were used to verify the MLC parameters.

Results: The difference between the measured and modeled penetrative quality (D10) was achieved to be 0.54%. The output factors for 6 MV photon energy were measured and the difference between the measured and Monte Carlo output results was smaller than 1% for all the fields. The average percentage of passing the gamma criteria for commissioning test fields was (95+-4)%, however, the minimum agreement was 87.5% belonging to "7SEGA". Additionally, the agreement between both LINAC is 96%, however, the second LINAC reveals a positive offset in the point of approximately -4 cm on the x-axis at the crossplane.

Conclusion: Test commissioning was successfully verified using a homogeneous phantom for point dose measurements, post modelling MLC parameters and patient QA plans. All plan parameters pass the gamma criteria. 6 MV photon beam was successfully commissioned for Elekta VersaHD LINAC and is ready for clinical implementation.

Keywords: Beam data measurements; Beam matching; Elekta VersaHD LINAC; Monaco Treatment planning system; Monte Carlo simulation; Virtual source model.