Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 17;23(1):bbab464.
doi: 10.1093/bib/bbab464.

SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations

Affiliations

SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations

Guangzhan Zhang et al. Brief Bioinform. .

Abstract

MiRNAs are a class of small non-coding RNA molecules that play an important role in many biological processes, and determining miRNA-disease associations can benefit drug development and clinical diagnosis. Although great efforts have been made to develop miRNA-disease association prediction methods, few attention has been paid to in-depth classification of miRNA-disease associations, e.g. up/down-regulation of miRNAs in diseases. In this paper, we regard known miRNA-disease associations as a signed bipartite network, which has miRNA nodes, disease nodes and two types of edges representing up/down-regulation of miRNAs in diseases, and propose a signed graph neural network method (SGNNMD) for predicting deregulation types of miRNA-disease associations. SGNNMD extracts subgraphs around miRNA-disease pairs from the signed bipartite network and learns structural features of subgraphs via a labeling algorithm and a neural network, and then combines them with biological features (i.e. miRNA-miRNA functional similarity and disease-disease semantic similarity) to build the prediction model. In the computational experiments, SGNNMD achieves highly competitive performance when compared with several baselines, including the signed graph link prediction methods, multi-relation prediction methods and one existing deregulation type prediction method. Moreover, SGNNMD has good inductive capability and can generalize to miRNAs/diseases unseen during the training.

Keywords: graph convolutional network; miRNA-disease associations; signed network; subgraph.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources