Next generation Fc scaffold for multispecific antibodies

iScience. 2021 Nov 15;24(12):103447. doi: 10.1016/j.isci.2021.103447. eCollection 2021 Dec 17.

Abstract

Bispecific antibodies (Bispecifics) demonstrate exceptional clinical potential to address some of the most complex diseases. However, Bispecific production in a single cell often requires the correct pairing of multiple polypeptide chains for desired assembly. This is a considerable hurdle that hinders the development of many immunoglobulin G (IgG)-like bispecific formats. Our approach focuses on the rational engineering of charged residues to facilitate the chain pairing of distinct heavy chains (HC). Here, we deploy structure-guided protein design to engineer charge pair mutations (CPMs) placed in the CH3-CH3' interface of the fragment crystallizable (Fc) region of an antibody (Ab) to correctly steer heavy chain pairing. When used in combination with our stable effector functionless 2 (SEFL2.2) technology, we observed high pairing efficiency without significant losses in expression yields. Furthermore, we investigate the relationship between CPMs and the sequence diversity in the parental antibodies, proposing a rational strategy to deploy these engineering technologies.

Keywords: Biochemistry; Bioengineering; Biomolecular engineering; Structural biology.